List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1334628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aortic dissection in pregnancy and the postpartum period. Seminars in Vascular Surgery, 2022, 35, 60-68.	2.8	5
2	The Aortic Dissection Collaborative: Methods for building capacity for patient-centered outcomes research in the aortic dissection community. Seminars in Vascular Surgery, 2022, 35, 9-15.	2.8	8
3	Gregor Mendel and the concepts of dominance and recessiveness. Nature Reviews Genetics, 2022, 23, 387-388.	16.3	11
4	Abnormal Bone Collagen Crossâ€Linking in Osteogenesis Imperfecta/Bruck Syndrome Caused by Compound Heterozygous <scp><i>PLOD2</i></scp> Mutations. JBMR Plus, 2021, 5, e10454.	2.7	17
5	Extrathoracic subclavian artery aneurysm in a patient with suspected genetic arteriopathy. Journal of Vascular Surgery Cases and Innovative Techniques, 2021, 7, 46-50.	0.6	2
6	Marfan syndrome resulting from a rare pathogenic FBN1 Âvariant, ascertained through a proband with IgG4 â€relatedÂarteriopathy. American Journal of Medical Genetics, Part A, 2021, 185, 2180-2189.	1.2	0
7	Subtle differences in autonomic symptoms in people diagnosed with hypermobile Ehlers–Danlos syndrome and hypermobility spectrum disorders. American Journal of Medical Genetics, Part A, 2021, 185, 2012-2025.	1.2	7
8	2020 McKusick Award address. American Journal of Human Genetics, 2021, 108, 761-763.	6.2	0
9	Caffey disease is associated with distinct arginine to cysteine substitutions in the proα1(I) chain of type I procollagen. Genetics in Medicine, 2021, 23, 2378-2385.	2.4	1
10	A call for direct sequencing of full-length RNAs to identify all modifications. Nature Genetics, 2021, 53, 1113-1116.	21.4	33
11	Genetic counseling and screening of consanguineous couples and their offspring practice resource: Focused Revision. Journal of Genetic Counseling, 2021, 30, 1354-1357.	1.6	1
12	True radial artery aneurysm in a patient with somatic mosaicism for a mutation in platelet-derived growth factor receptor I² gene. Journal of Vascular Surgery Cases and Innovative Techniques, 2021, 7, 567-571.	0.6	1
13	Biallelic variants in MESD, which encodes a WNT-signaling-related protein, in four new families with recessively inherited osteogenesis imperfecta. Human Genetics and Genomics Advances, 2021, 2, 100051.	1.7	3
14	A multi-institutional experience in vascular Ehlers-Danlos syndrome diagnosis. Journal of Vascular Surgery, 2020, 71, 149-157.	1.1	28
15	Hearing loss in individuals with osteogenesis imperfecta in North America: Results from a multicenter study. American Journal of Medical Genetics, Part A, 2020, 182, 697-704.	1.2	17
16	Assessment of the Information Sources and Interest in Research Collaboration Among Individuals with Vascular Ehlers-Danlos Syndrome. Annals of Vascular Surgery, 2020, 62, 326-334.	0.9	14
17	Orthopaedic Conditions Associated with Aneurysms. JBJS Reviews, 2020, 8, e0122-e0122.	2.0	3
18	The Ehlers–Danlos syndromes. Nature Reviews Disease Primers, 2020, 6, 64.	30.5	144

#	Article	IF	CITATIONS
19	6q25.1 (TAB2) microdeletion is a risk factor for hypoplastic left heart: a case report that expands the phenotype. BMC Cardiovascular Disorders, 2020, 20, 137.	1.7	10
20	Setting a research agenda for vascular Ehlers-Danlos syndrome using a patient and stakeholder engagement model. Journal of Vascular Surgery, 2020, 72, 1436-1444.e2.	1.1	15
21	Introduction to Osteogenesis Imperfecta. , 2020, , 3-9.		0
22	Growth characteristics in individuals with osteogenesis imperfecta in North America: results from a multicenter study. Genetics in Medicine, 2019, 21, 275-283.	2.4	34
23	A Multicenter Observational Cohort Study to Evaluate the Effects of Bisphosphonate Exposure on Bone Mineral Density and Other Health Outcomes in Osteogenesis Imperfecta. JBMR Plus, 2019, 3, e10118.	2.7	22
24	Compound heterozygosity for a frameshift mutation and an upstream deletion that reduces expression of <i>SERPINH1</i> in siblings with a moderate form of osteogenesis imperfecta. American Journal of Medical Genetics, Part A, 2019, 179, 1466-1475.	1.2	6
25	A multi-institutional experience in the aortic and arterial pathology in individuals with genetically confirmed vascular Ehlers-Danlos syndrome. Journal of Vascular Surgery, 2019, 70, 1543-1554.	1.1	39
26	Mobility in osteogenesis imperfecta: a multicenter North American study. Genetics in Medicine, 2019, 21, 2311-2318.	2.4	15
27	Trends over 42 years in the Adult Medical Genetics Clinic at the University of Washington. Genetics in Medicine, 2019, 21, 1457-1461.	2.4	6
28	Mutations That Alter the Carboxy-Terminal-Propeptide Cleavage Site of the Chains of Type I Procollagen Are Associated With a Unique Osteogenesis Imperfecta Phenotype. Journal of Bone and Mineral Research, 2018, 33, 1260-1271.	2.8	21
29	Testing patterns for genetically triggered aortic and arterial aneurysms and dissections at an academic center. Journal of Vascular Surgery, 2018, 68, 701-711.	1.1	20
30	Monoallelic and biallelic CREB3L1 variant causes mild and severe osteogenesis imperfecta, respectively. Genetics in Medicine, 2018, 20, 411-419.	2.4	47
31	Heterozygous <i>WNT1</i> variant causing a variable bone phenotype. American Journal of Medical Genetics, Part A, 2018, 176, 2419-2424.	1.2	11
32	A multicenter study to evaluate pulmonary function in osteogenesis imperfecta. Clinical Genetics, 2018, 94, 502-511.	2.0	33
33	Substitutions for arginine at position 780 in triple helical domain of the α1(I) chain alter folding of the type I procollagen molecule and cause osteogenesis imperfecta. PLoS ONE, 2018, 13, e0200264.	2.5	16
34	Bi-allelic variants in <i>COL3A1</i> encoding the ligand to GPR56 are associated with cobblestone-like cortical malformation, white matter changes and cerebellar cysts. Journal of Medical Genetics, 2017, 54, 432-440.	3.2	34
35	6q25.1 (<i>TAB2</i>) microdeletion syndrome: Congenital heart defects and cardiomyopathy. American Journal of Medical Genetics, Part A, 2017, 173, 1848-1857.	1.2	22
36	Endovascular Repair of Internal Mammary Artery Aneurysms in 2 Sisters with SMAD3 Mutation. Annals of Vascular Surgery, 2017, 41, 283.e5-283.e9.	0.9	10

#	Article	IF	CITATIONS
37	Diagnosis, natural history, and management in vascular Ehlers–Danlos syndrome. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2017, 175, 40-47.	1.6	239
38	Osteogenesis imperfecta. Nature Reviews Disease Primers, 2017, 3, 17052.	30.5	481
39	Periodontal Ehlers-Danlos Syndrome Is Caused by Mutations in C1R and C1S , which Encode Subcomponents C1r and C1s of Complement. American Journal of Human Genetics, 2016, 99, 1005-1014.	6.2	100
40	Current Practices and the Provider Perspectives on Inconclusive Genetic Test Results for Osteogenesis Imperfecta in Children with Unexplained Fractures: ELSI Implications. Journal of Law, Medicine and Ethics, 2016, 44, 514-519.	0.9	7
41	<i>COL1A1</i> and <i>COL1A2</i> sequencing results in cohort of patients undergoing evaluation for potential child abuse. American Journal of Medical Genetics, Part A, 2016, 170, 1858-1862.	1.2	19
42	Cesarean delivery is not associated with decreased at-birth fracture rates in osteogenesis imperfecta. Genetics in Medicine, 2016, 18, 570-576.	2.4	39
43	The challenge of comprehensive and consistent sequence variant interpretation between clinical laboratories. Genetics in Medicine, 2016, 18, 20-24.	2.4	63
44	Molecular Outcome, Prediction, and Clinical Consequences of Splice Variants in <i>COL1A1</i> , Which Encodes the proα1(I) Chains of Type I Procollagen. Human Mutation, 2015, 36, 728-739.	2.5	22
45	A homozygous <i>B3GAT3</i> mutation causes a severe syndrome with multiple fractures, expanding the phenotype of linkeropathy syndromes. American Journal of Medical Genetics, Part A, 2015, 167, 2691-2696.	1.2	44
46	What every clinical geneticist should know about testing for osteogenesis imperfecta in suspected child abuse cases. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2015, 169, 307-313.	1.6	31
47	A crossâ€sectional multicenter study ofÂosteogenesis imperfecta in North America–Âresults from the linked clinical research centers. Clinical Genetics, 2015, 87, 133-140.	2.0	59
48	Vascular Ehlers–Danlos Syndrome in siblings with biallelic COL3A1 sequence variants and marked clinical variability in the extended family. European Journal of Human Genetics, 2015, 23, 796-802.	2.8	33
49	Haploinsufficiency for Mutations in Type I Collagen Genes: Mechanisms and Clinical Effects. , 2014, , 125-127.		1
50	Pre- and Postnatal Transplantation of Fetal Mesenchymal Stem Cells in Osteogenesis Imperfecta: A Two-Center Experience. Stem Cells Translational Medicine, 2014, 3, 255-264.	3.3	162
51	Pregnancy-related deaths and complications in women with vascular Ehlers–Danlos syndrome. Genetics in Medicine, 2014, 16, 874-880.	2.4	127
52	Survival is affected by mutation type and molecular mechanism in vascular Ehlers–Danlos syndrome (EDS type IV). Genetics in Medicine, 2014, 16, 881-888.	2.4	217
53	FKBP14-related Ehlers-Danlos syndrome: Expansion of the phenotype to include vascular complications. , 2014, 164, 1750-1755.		23
54	Ehlers–Danlos syndrome: A showcase of conditions that lead to understanding matrix biology. Matrix Biology, 2014, 33, 10-15.	3.6	57

#	Article	IF	CITATIONS
55	Refining the structure and content of clinical genomic reports. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2014, 166, 85-92.	1.6	37
56	Ehlers–Danlos Syndrome. , 2013, , 1-23.		2
57	WNT1 Mutations in Families Affected by Moderately Severe and Progressive Recessive Osteogenesis Imperfecta. American Journal of Human Genetics, 2013, 92, 590-597.	6.2	179
58	Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Human Molecular Genetics, 2013, 22, 1-17.	2.9	135
59	Allelic background of LEPRE1 mutations that cause recessive forms of osteogenesis imperfecta in different populations. Molecular Genetics & amp; Genomic Medicine, 2013, 1, 194-205.	1.2	18
60	Heritable Collagen Disorders: The Paradigm of the Ehlers—Danlos Syndrome. Journal of Investigative Dermatology, 2012, 132, E6-E11.	0.7	45
61	Characterization of Tissue-Specific and Developmentally Regulated Alternative Splicing of Exon 64 in the <i>COL5A1 </i> Gene. Connective Tissue Research, 2012, 53, 267-276.	2.3	7
62	EMQN best practice guidelines for the laboratory diagnosis of osteogenesis imperfecta. European Journal of Human Genetics, 2012, 20, 11-19.	2.8	107
63	Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nature Genetics, 2012, 44, 922-927.	21.4	391
64	Recessively Inherited Forms of Osteogenesis Imperfecta. Annual Review of Genetics, 2012, 46, 475-497.	7.6	94
65	Haploinsufficiency of SF3B4, a Component of the Pre-mRNA Spliceosomal Complex, Causes Nager Syndrome. American Journal of Human Genetics, 2012, 90, 925-933.	6.2	188
66	Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes. Human Molecular Genetics, 2011, 20, 1595-1609.	2.9	118
67	COL3A1haploinsufficiency results in a variety of Ehlers-Danlos syndrome type IV with delayed onset of complications and longer life expectancy. Genetics in Medicine, 2011, 13, 717-722.	2.4	98
68	Recurrence of perinatal lethal osteogenesis imperfecta in sibships: Parsing the risk between parental mosaicism for dominant mutations and autosomal recessive inheritance. Genetics in Medicine, 2011, 13, 125-130.	2.4	64
69	Homozygosity for a Missense Mutation in SERPINH1, which Encodes the Collagen Chaperone Protein HSP47, Results in Severe Recessive Osteogenesis Imperfecta. American Journal of Human Genetics, 2010, 86, 389-398.	6.2	291
70	Mutations in the Gene Encoding the RER Protein FKBP65 Cause Autosomal-Recessive Osteogenesis Imperfecta. American Journal of Human Genetics, 2010, 86, 551-559.	6.2	278
71	Mutations in the Gene Encoding the RER Protein FKBP65 Cause Autosomal-Recessive Osteogenesis Imperfecta. American Journal of Human Genetics, 2010, 87, 572-573.	6.2	13
72	Generalized Connective Tissue Disease in Crtap-/- Mouse. PLoS ONE, 2010, 5, e10560.	2.5	52

#	Article	IF	CITATIONS
73	Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype-phenotype relationships. Human Molecular Genetics, 2009, 18, 1893-1895.	2.9	3
74	Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype–phenotype relationships. Human Molecular Genetics, 2009, 18, 463-471.	2.9	107
75	Successful Endovascular Repair of Acute Type B Aortic Dissection in Undiagnosed Ehlers–Danlos Syndrome Type IV. European Journal of Vascular and Endovascular Surgery, 2009, 38, 608-609.	1.5	22
76	Molecular mechanisms of classical Ehlers-Danlos syndrome (EDS). Human Mutation, 2009, 30, 995-1002.	2.5	70
77	Analysis of multigenerational families with thoracic aortic aneurysms and dissections due to TGFBR1 or TGFBR2 mutations. Journal of Medical Genetics, 2009, 46, 607-613.	3.2	172
78	<i>CRTAP</i> and <i>LEPRE1</i> mutations in recessive osteogenesis imperfecta. Human Mutation, 2008, 29, 1435-1442.	2.5	196
79	Natural variation in four human collagen genes across an ethnically diverse population. Genomics, 2008, 91, 307-314.	2.9	47
80	The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart, 2008, 94, 1634-1638.	2.9	364
81	Defective C-propeptides of the Proα2(I) Chain of Type I Procollagen Impede Molecular Assembly and Result in Osteogenesis Imperfecta. Journal of Biological Chemistry, 2008, 283, 16061-16067.	3.4	57
82	Gene Targeting of Mutant COL1A2 Alleles in Mesenchymal Stem Cells From Individuals With Osteogenesis Imperfecta. Molecular Therapy, 2008, 16, 187-193.	8.2	78
83	Type XXVII collagen at the transition of cartilage to bone during skeletogenesis. Bone, 2007, 41, 535-542.	2.9	67
84	Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Human Mutation, 2007, 28, 209-221.	2.5	620
85	Usefulness of Bicuspid Aortic Valve Phenotype to Predict Elastic Properties of the Ascending Aorta. American Journal of Cardiology, 2007, 99, 686-690.	1.6	138
86	If Only We Spoke the Same Language—We Would Have So Much to Discuss*. American Journal of Human Genetics, 2006, 78, 368-372.	6.2	1
87	Introductory Speech for Joseph D. McInerney*. American Journal of Human Genetics, 2006, 78, 373.	6.2	0
88	CRTAP Is Required for Prolyl 3- Hydroxylation and Mutations Cause Recessive Osteogenesis Imperfecta. Cell, 2006, 127, 291-304.	28.9	465
89	The role of genomics in medicine — Past, present and future. Journal of Zhejiang University: Science B, 2006, 7, 159-160.	2.8	0
90	Genetic evaluation of suspected osteogenesis imperfecta (OI). Genetics in Medicine, 2006, 8, 383-388.	2.4	78

#	Article	IF	CITATIONS
91	Aneurysm Syndromes Caused by Mutations in the TGF- \hat{I}^2 Receptor. New England Journal of Medicine, 2006, 355, 788-798.	27.0	1,490
92	Bovine model of Marfan syndrome results from an amino acid change (c.3598G>A, p.E1200K) in a calcium-binding epidermal growth factor-like domain of fibrillin-1. Human Mutation, 2005, 25, 348-352.	2.5	21
93	Novel missense mutations in the TRPS1 transcription factor define the nuclear localization signal. European Journal of Human Genetics, 2004, 12, 121-126.	2.8	52
94	Stability related bias in residues replacing glycines within the collagen triple helix (Gly-Xaa-Yaa) in in inherited connective tissue disorders. Human Mutation, 2004, 24, 330-337.	2.5	95
95	Gene Targeting in Stem Cells from Individuals with Osteogenesis Imperfecta. Science, 2004, 303, 1198-1201.	12.6	271
96	Rare Autosomal Recessive Cardiac Valvular Form of Ehlers-Danlos Syndrome Results from Mutations in the COL1A2 Gene That Activate the Nonsense-Mediated RNA Decay Pathway. American Journal of Human Genetics, 2004, 74, 917-930.	6.2	147
97	Determination of the molecular basis of Marfan syndrome: a growth industry. Journal of Clinical Investigation, 2004, 114, 161-163.	8.2	36
98	Determination of the molecular basis of Marfan syndrome: a growth industry. Journal of Clinical Investigation, 2004, 114, 161-163.	8.2	16
99	Neurological presentation of Ehlers-Danlos syndrome type IV in a family with parental mosaicism. Clinical Genetics, 2003, 63, 510-515.	2.0	27
100	Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1. Matrix Biology, 2003, 22, 3-14.	3.6	112
101	Testing for osteogenesis imperfecta in cases of suspected non-accidental injury. Journal of Medical Genetics, 2002, 39, 382-386.	3.2	72
102	Spontaneous Direct Carotid-Cavernous Fistula in Ehlers-Danlos Syndrome Type IV: Two Case Reports and a Review of the Literature. Journal of Neuro-Ophthalmology, 2002, 22, 75-81.	0.8	74
103	A single amino acid substitution (D1441Y) in the carboxyl-terminal propeptide of the proalpha1(I) chain of type I collagen results in a lethal variant of osteogenesis imperfecta with features of dense bone diseases. Journal of Medical Genetics, 2002, 39, 23-29.	3.2	42
104	A variant of osteogenesis imperfecta type IV with resolving kyphomelia is caused by a novel COL1A2 mutation. Journal of Medical Genetics, 2002, 39, 128-132.	3.2	7
105	Order of Intron Removal Influences Multiple Splice Outcomes, Including a Two-Exon Skip, in a COL5A1 Acceptor-Site Mutation That Results in Abnormal Pro-α1(V) N-Propeptides and Ehlers-Danlos Syndrome Type I. American Journal of Human Genetics, 2002, 71, 451-465.	6.2	100
106	Killing the messenger: new insights into nonsense-mediated mRNA decay. Journal of Clinical Investigation, 2002, 109, 3-6.	8.2	114
107	Killing the messenger: new insights into nonsense-mediated mRNA decay. Journal of Clinical Investigation, 2002, 109, 3-6.	8.2	73
108	Haploinsufficiency for One COL3A1 Allele of Type III Procollagen Results in a Phenotype Similar to the Vascular Form of Ehlers-Danlos Syndrome, Ehlers-Danlos Syndrome Type IV. American Journal of Human Genetics, 2001, 69, 989-1001.	6.2	168

PETER H BYERS

#	Article	IF	CITATIONS
109	Osteogenesis imperfecta: mode of delivery and neonatal outcome. Obstetrics and Gynecology, 2001, 97, 66-69.	2.4	44
110	Deletions and duplications of Gly-Xaa-Yaa triplet repeats in the triple helical domains of type I collagen chains disrupt helix formation and result in several types of osteogenesis imperfecta. Human Mutation, 2001, 18, 319-326.	2.5	38
111	Disruption of one intra-chain disulphide bond in the carboxyl-terminal propeptide of the proalpha1(I) chain of type I procollagen permits slow assembly and secretion of overmodified, but stable procollagen trimers and results in mild osteogenesis imperfecta. Journal of Medical Genetics, 2001, 38, 443-449.	3.2	51
112	Folding defects in fibrillar collagens. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 151-158.	4.0	49
113	An Exception to the Rule. New England Journal of Medicine, 2001, 345, 1203-1205.	27.0	9
114	Osteogenesis imperfecta: perspectives and opportunities. Current Opinion in Pediatrics, 2000, 12, 603-609.	2.0	50
115	Collagens: building blocks at the end of the development line. Clinical Genetics, 2000, 58, 270-279.	2.0	43
116	Partial COL1A2 gene duplication produces features of osteogenesis imperfecta and Ehlers-Danlos syndrome type VII. Human Genetics, 2000, 106, 19-28.	3.8	37
117	Null Alleles of the COL5A1 Gene of Type V Collagen Are a Cause of the Classical Forms of Ehlers-Danlos Syndrome (Types I and II). American Journal of Human Genetics, 2000, 66, 1757-1765.	6.2	122
118	Clinical and Genetic Features of Ehlers–Danlos Syndrome Type IV, the Vascular Type. New England Journal of Medicine, 2000, 342, 673-680.	27.0	1,219
119	Multiple Vascular and Bowel Ruptures in an Adolescent Male with Sporadic Ehlers-Danlos Syndrome Type IV. Pediatric and Developmental Pathology, 1999, 2, 86-93.	1.0	26
120	Large kindred with Ehlers-Danlos syndrome type IV due to a point mutation (G571S) in theCOL3A1 gene of type III procollagen: Low risk of pregnancy complications and unexpected longevity in some affected relatives. , 1999, 82, 305-311.		29
121	Human Ehlers-Danlos Syndrome Type VII C and Bovine Dermatosparaxis Are Caused by Mutations in the Procollagen I N-Proteinase Gene. American Journal of Human Genetics, 1999, 65, 308-317.	6.2	348
122	Redefinition of Exon 7 in the COL1A1 Gene of Type I Collagen by an Intron 8 Splice-Donor–Site Mutation in a Form of Osteogenesis Imperfecta: Influence of Intron Splice Order on Outcome of Splice-Site Mutation. American Journal of Human Genetics, 1999, 65, 336-344.	6.2	62
123	Molecular Genetic Pathology. Journal of Molecular Diagnostics, 1999, 1, 3-4.	2.8	5
124	Molecular Genetic Pathology. American Journal of Pathology, 1999, 155, 673-674.	3.8	4
125	Large kindred with Ehlersâ€Ðanlos syndrome type IV due to a point mutation (G571S) in the COL3A1 gene of type III procollagen: Low risk of pregnancy complications and unexpected longevity in some affected relatives. American Journal of Medical Genetics Part A, 1999, 82, 305-311.	2.4	1
126	Pedigrees—Publish? or Perish the Thought?. American Journal of Human Genetics, 1998, 63, 678-681.	6.2	14

#	Article	IF	CITATIONS
127	Constitutive skipping of alternatively spliced exon 10 in the ATP7A gene abolishes Golgi localization of the menkes protein and produces the occipital horn syndrome [published erratum appears in Hum Mol Genet 1998 Jun;7(6):1059]. Human Molecular Genetics, 1998, 7, 465-469.	2.9	65
128	Splicing Defects in the COL3A1 Gene: Marked Preference for 5′ (Donor) Splice-Site Mutations in Patients with Exon-Skipping Mutations and Ehlers-Danlos Syndrome Type IV. American Journal of Human Genetics, 1997, 61, 1276-1286.	6.2	73
129	Mutations in the COL3A1 Gene Result in the Ehlers–Danlos Syndrome Type IV and Alterations in the Size and Distribution of the Major Collagen Fibrils of the Dermis. Journal of Investigative Dermatology, 1997, 108, 241-247.	0.7	71
130	Ehlers-Danlos syndrome type VIIA and VIIB result from splice-junction mutations or genomic deletions that involve exon 6 in theCOL1A1 andCOL1A2 genes of type I collagen. American Journal of Medical Genetics Part A, 1997, 72, 94-105.	2.4	117
131	STRATEGIES AND OUTCOMES OF PRENATAL DIAGNOSIS FOR OSTEOGENESIS IMPERFECTA: A REVIEW OF BIOCHEMICAL AND MOLECULAR STUDIES COMPLETED IN 129 PREGNANCIES. , 1997, 17, 559-570.		73
132	Strategies and outcomes of prenatal diagnosis for osteogenesis imperfecta: a review of biochemical and molecular studies completed in 129 pregnancies. Prenatal Diagnosis, 1997, 17, 559-70.	2.3	11
133	Studies of collagen synthesis and structure in the differentiation of child abuse from osteogenesis imperfecta. Journal of Pediatrics, 1996, 128, 542-547.	1.8	78
134	A dimorphic Alu Sb-like insertion in COL3A1 is ethnic-specific. Journal of Molecular Evolution, 1996, 42, 117-123.	1.8	12
135	Delineation of the Marfan phenotype associated with mutations in exons 23–32 of theFBN1 gene. , 1996, 62, 233-242.		120
136	A translocation interrupts the COL5A1 gene in a patient with Ehlers–Danlos syndrome and hypomelanosis of Ito. Nature Genetics, 1996, 13, 361-365.	21.4	116
137	Spontaneous multivessel cervical artery dissection in a patient with a substitution of alanine for glycine (G13A) in the alpha 1(I) chain of type I collagen. Neurology, 1996, 47, 552-556.	1.1	93
138	Substitutions of aspartic acid for glycine-220 and of arginine for glycine-664 in the triple helix of the pro α1(I) chain of type I procollagen produce lethal osteogenesis imperfecta and disrupt the ability of collagen fibrils to incorporate crystalline hydroxyapatite. Biochemical Journal, 1995, 311, 815-820.	3.7	25
139	Cerebrovascular complications in Ehlers-Danlos syndrome type IV. Annals of Neurology, 1995, 38, 960-964.	5.3	176
140	A Gly238Ser substitution in the ?2 chain of type I collagen results in osteogenesis imperfecta type III. Human Genetics, 1995, 95, 215-8.	3.8	10
141	Endoplasmic Reticulum-mediated Quality Control of Type I Collagen Production by Cells from Osteogenesis Imperfecta Patients with Mutations in the proα1(l) Chain Carboxyl-terminal Propeptide which Impair Subunit Assembly. Journal of Biological Chemistry, 1995, 270, 8642-8649.	3.4	129
142	Frontiers in Rehabilitation Medicine: Osteogenesis Imperfecta, Overview of a Conference. Connective Tissue Research, 1995, 31, 253-255.	2.3	3
143	Etiology of Osteogenesis Imperfecta: An Overview of Biochemical and Molecular Genetic Analyses. Connective Tissue Research, 1995, 31, 257-259.	2.3	5
144	Ehlers-Danlos Syndrome: Recent Advances and Current Understanding of the Clinical and Genetic Heterogeneity Journal of Investigative Dermatology, 1994, 103, 47S-52S.	0.7	57

#	Article	IF	CITATIONS
145	A Gly859Ser substitution in the triple helical domain of the α2 chain of type I collagen resulting in osteogenesis imperfecta type III in two unrelated individuals. Human Mutation, 1994, 3, 391-394.	2.5	14
146	MOLECULAR BASIS OF HEREDITARY DISORDERS OF CONNECTIVE TISSUE. Annual Review of Medicine, 1994, 45, 149-163.	12.2	37
147	Sequence of the Coding Region of the Bovine Fibrillin cDNA and Localization to Bovine Chromosome 10. Genomics, 1994, 23, 480-485.	2.9	26
148	Molecular genetics of chondrodysplasias, including clues to development, structure, and function. Current Opinion in Rheumatology, 1994, 6, 345.	4.3	13
149	Osteogenesis imperfecta type I: molecular heterogeneity for COL1A1 null alleles of type I collagen. American Journal of Human Genetics, 1994, 55, 638-47.	6.2	107
150	Molecular heterogeneity in osteogenesis imperfecta type I. American Journal of Medical Genetics Part A, 1993, 45, 223-227.	2.4	44
151	Homology-mediated recombination between type I collagen gene exons results in an internal tandem duplication and lethal osteogenesis imperfecta. Human Mutation, 1993, 2, 21-27.	2.5	11
152	A single amino acid deletion in the ?2(I) chain of type I collagen produces osteogenesis imperfecta type III. Human Genetics, 1993, 90, 621-8.	3.8	15
153	First-trimester prenatal diagnosis of osteogenesis imperfecta type II by DNA analysis and sonography. Prenatal Diagnosis, 1993, 13, 589-596.	2.3	40
154	Sequence and Characterization of the Complete Human Thrombospondin 2 cDNA: Potential Regulatory Role for the 3′ Untranslated Region. Genomics, 1993, 17, 225-229.	2.9	32
155	Osteogenesis imperfecta type III: mutations in the type I collagen structural genes, COL1A1 and COL1A2, are not necessarily responsible Journal of Medical Genetics, 1993, 30, 492-496.	3.2	60
156	A novel glycine to glutamic acid substitution at position 343 in the α2 chain of type I collagen in an individual with lethal osteogenesis imperfecta. Human Molecular Genetics, 1993, 2, 2175-2177.	2.9	14
157	An RT-PCR-SSCP screening strategy for detection of mutations in the gene encoding the α1 chain of type I collagen: application to four patients with osteogenesis imperfecta. Human Molecular Genetics, 1993, 2, 1155-1160.	2.9	45
158	Parental somatic and germ-line mosaicism for a multiexon deletion with unusual endpoints in a type III collagen (COL3A1) allele produces Ehlers-Danlos syndrome type IV in the heterozygous offspring. American Journal of Human Genetics, 1993, 53, 62-70.	6.2	39
159	Abnormal fibrillin metabolism in bovine Marfan syndrome. American Journal of Pathology, 1993, 142, 803-10.	3.8	19
160	Mutations in the carboxyl-terminal propeptide of the pro alpha 1(I) chain of type I collagen result in defective chain association and produce lethal osteogenesis imperfecta. Journal of Biological Chemistry, 1993, 268, 18218-25.	3.4	59
161	BiP binds type I procollagen pro alpha chains with mutations in the carboxyl-terminal propeptide synthesized by cells from patients with osteogenesis imperfecta. Journal of Biological Chemistry, 1993, 268, 18226-33.	3.4	122
162	Thrombospondin II: Partial cDNA sequence, chromosome location, and expression of a second member of the thrombospondin gene family in humans. Genomics, 1992, 12, 421-429.	2.9	53

PETER H BYERS

#	Article	IF	CITATIONS
163	Osteogenesis Imperfecta. Annual Review of Medicine, 1992, 43, 269-282.	12.2	244
164	Marfan syndrome: defective synthesis, secretion, and extracellular matrix formation of fibrillin by cultured dermal fibroblasts Journal of Clinical Investigation, 1992, 89, 79-86.	8.2	235
165	Recurrence of lethal osteogenesis imperfecta due to parental mosaicism for a mutation in the COL1A2 gene of type I collagen. The mosiac parent exhibits phenotypic features of a mild form of the disease. Human Mutation, 1992, 1, 47-54.	2.5	80
166	Human dermatosparaxis: a form of Ehlers-Danlos syndrome that results from failure to remove the amino-terminal propeptide of type I procollagen. American Journal of Human Genetics, 1992, 51, 235-44.	6.2	82
167	Osteogenesis imperfecta type I is commonly due to a COL1A1 null allele of type I collagen. American Journal of Human Genetics, 1992, 51, 508-15.	6.2	66
168	Defective folding and stable association with protein disulfide isomerase/prolyl hydroxylase of type I procollagen with a deletion in the pro alpha 2(I) chain that preserves the Gly-X-Y repeat pattern. Journal of Biological Chemistry, 1992, 267, 7751-7.	3.4	59
169	A tripeptide deletion in the triple-helical domain of the pro alpha 1(I) chain of type I procollagen in a patient with lethal osteogenesis imperfecta does not alter cleavage of the molecule by N-proteinase. Journal of Biological Chemistry, 1992, 267, 25529-34.	3.4	16
170	Ehlers Danlos syndrome type VIIB. Incomplete cleavage of abnormal type I procollagen by N-proteinase in vitro results in the formation of copolymers of collagen and partially cleaved pNcollagen that are near circular in cross-section. Journal of Biological Chemistry, 1992, 267, 9093-100.	3.4	49
171	Osteogenesis imperfecta due to recurrent point mutations at CpG dinucleotides in the COL1A1 gene of type I collagen. Human Genetics, 1991, 87, 33-40.	3.8	37
172	Cysteine in the triple helical domain of the pro?2(I) chain of type-I collagen in nonlethal forms of osteogenesis imperfecta. Human Genetics, 1991, 87, 167-172.	3.8	3
173	Osteogenesis imperfecta: translation of mutation to phenotype Journal of Medical Genetics, 1991, 28, 433-442.	3.2	292
174	The effects of different cysteine for glycine substitutions within alpha 2(I) chains. Evidence of distinct structural domains within the type I collagen triple helix. Journal of Biological Chemistry, 1991, 266, 2590-2594.	3.4	51
175	Multiexon deletion in the procollagen III gene is associated with mild Ehlers-Danlos syndrome type IV Journal of Biological Chemistry, 1991, 266, 5244-5248.	3.4	27
176	The effects of different cysteine for glycine substitutions within alpha 2(I) chains. Evidence of distinct structural domains within the type I collagen triple helix. Journal of Biological Chemistry, 1991, 266, 2590-4.	3.4	39
177	Multiexon deletion in the procollagen III gene is associated with mild Ehlers-Danlos syndrome type IV. Journal of Biological Chemistry, 1991, 266, 5244-8.	3.4	23
178	Brittle bones - fragile molecules: disorders of collagen gene structure and expression. Trends in Genetics, 1990, 6, 293-299.	6.7	215
179	Clinical Screening for Collagen Defects in Connective Tissue Diseases. Clinics in Perinatology, 1990, 17, 793-809.	2.1	25
180	Substitution of arginine for glycine at position 847 in the triple-helical domain of the alpha 1 (I) chain of type I collagen produces lethal osteogenesis imperfecta. Molecules that contain one or two abnormal chains differ in stability and secretion Journal of Biological Chemistry, 1990, 265, 18628-18633.	3.4	24

#	Article	IF	CITATIONS
181	Frameshift mutation near the 3' end of the COL1A1 gene of type I collagen predicts an elongated Pro alpha 1(I) chain and results in osteogenesis imperfecta type I Journal of Clinical Investigation, 1990, 85, 282-290.	8.2	87
182	Mutations in Collagen Genes: Biochemical and Phenotypic Consequences. , 1990, , 251-263.		3
183	Distinct biochemical phenotypes predict clinical severity in nonlethal variants of osteogenesis imperfecta. American Journal of Human Genetics, 1990, 46, 975-82.	6.2	92
184	Recurrence of lethal osteogenesis imperfecta due to parental mosaicism for a dominant mutation in a human type I collagen gene (COL1A1). American Journal of Human Genetics, 1990, 46, 591-601.	6.2	145
185	Variable expression of osteogenesis imperfecta in a nuclear family is explained by somatic mosaicism for a lethal point mutation in the alpha 1(l) gene (COL1A1) of type I collagen in a parent. American Journal of Human Genetics, 1990, 46, 1034-40.	6.2	86
186	Substitution of arginine for glycine at position 847 in the triple-helical domain of the alpha 1 (I) chain of type I collagen produces lethal osteogenesis imperfecta. Molecules that contain one or two abnormal chains differ in stability and secretion. Journal of Biological Chemistry, 1990, 265, 18628-33.	3.4	13
187	Ehlers-Danlos syndrome type IV: A subset of patients distinguished by low serum levels of the amino-terminal propeptide of type III procollagen. American Journal of Medical Genetics Part A, 1989, 34, 68-71.	2.4	28
188	Inherited disorders of collagen gene structure and expression. American Journal of Medical Genetics Part A, 1989, 34, 72-80.	2.4	79
189	Skin is a window on heritable disorders of connective tissue. American Journal of Medical Genetics Part A, 1989, 34, 105-121.	2.4	87
190	Molecular defects of type III procollagen in Ehlers-Danlos syndrome type IV. Human Genetics, 1989, 82, 104-108.	3.8	97
191	TYPE m COLLAGEN DEFICIENCY. Lancet, The, 1989, 333, 903-904.	13.7	12
192	Osteogenesis imperfecta. The position of substitution for glycine by cysteine in the triple helical domain of the pro alpha 1(I) chains of type I collagen determines the clinical phenotype Journal of Clinical Investigation, 1989, 84, 1206-1214.	8.2	74
193	Molecular heterogeneity in chondrodysplasias. American Journal of Human Genetics, 1989, 45, 1-4.	6.2	4
194	Osteogenesis Imperfecta: The Molecular Basis of Clinical Heterogeneity ^a . Annals of the New York Academy of Sciences, 1988, 543, 117-128.	3.8	33
195	General Strategies for Isolating the Genes Encoding Type I Collagen and for Characterizing Mutations Which Produce Osteogenesis Imperfecta. Annals of the New York Academy of Sciences, 1988, 543, 129-135.	3.8	5
196	Substitution of cysteine for glycine within the carboxyl-terminal telopeptide of the alpha 1 chain of type I collagen produces mild osteogenesis imperfecta Journal of Biological Chemistry, 1988, 263, 14605-14607.	3.4	36
197	Heterozygosity for a large deletion in the alpha 2(I) collagen gene has a dramatic effect on type I collagen secretion and produces perinatal lethal osteogenesis imperfecta Journal of Biological Chemistry, 1988, 263, 8398-8404.	3.4	74
198	Arginine for glycine substitution in the triple-helical domain of the products of one alpha 2(I) collagen allele (COL1A2) produces the osteogenesis imperfecta type IV phenotype Journal of Biological Chemistry, 1988, 263, 7734-7740.	3.4	69

#	Article	IF	CITATIONS
199	A novel mutation causes a perinatal lethal form of osteogenesis imperfecta. An insertion in one alpha 1(I) collagen allele (COL1A1) Journal of Biological Chemistry, 1988, 263, 7855-7861.	3.4	42
200	Perinatal lethal osteogenesis imperfecta (OI type II): a biochemically heterogeneous disorder usually due to new mutations in the genes for type I collagen. American Journal of Human Genetics, 1988, 42, 237-48.	6.2	184
201	Arginine for glycine substitution in the triple-helical domain of the products of one alpha 2(I) collagen allele (COL1A2) produces the osteogenesis imperfecta type IV phenotype. Journal of Biological Chemistry, 1988, 263, 7734-40.	3.4	53
202	A novel mutation causes a perinatal lethal form of osteogenesis imperfecta. An insertion in one alpha 1(I) collagen allele (COL1A1). Journal of Biological Chemistry, 1988, 263, 7855-61.	3.4	31
203	Heterozygosity for a large deletion in the alpha 2(I) collagen gene has a dramatic effect on type I collagen secretion and produces perinatal lethal osteogenesis imperfecta. Journal of Biological Chemistry, 1988, 263, 8398-404.	3.4	65
204	Molecular Basis of Inherited Disorders of Collagen Biosynthesis: Implications for Prenatal Diagnosis1. Current Problems in Dermatology, 1987, 16, 158-174.	0.7	5
205	Lethal osteogenesis imperfecta resulting from a single nucleotide change in one human pro alpha 1(I) collagen allele Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 6045-6047.	7.1	118
206	Ehlers-Danlos syndrome type IV: cosegregation of the phenotype to a COL3A1 allele of type III procollagen. Human Genetics, 1986, 74, 41-6.	3.8	72
207	Osteogenesis imperfecta type IV: evidence of abnormal triple helical structure of type I collagen. Human Genetics, 1986, 74, 47-53.	3.8	22
208	Osteogenesis imperfecta type IV. Biochemical confirmation of genetic linkage to the pro alpha 2(I) gene of type I collagen Journal of Clinical Investigation, 1986, 78, 1449-1455.	8.2	32
209	Intron-mediated recombination may cause a deletion in an alpha 1 type I collagen chain in a lethal form of osteogenesis imperfecta Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2870-2874.	7.1	121
210	Subtle structural alterations in the chains of type I procollagen produce osteogenesis imperfecta type II. Nature, 1985, 316, 363-366.	27.8	204
211	Molecular Basis of Clinical Heterogeneity in the Ehlers-Danlos Syndrome. Annals of the New York Academy of Sciences, 1985, 460, 298-310.	3.8	33
212	The molecular basis of clinical heterogeneity in osteogenesis imperfecta: Mutations in type I collagen genes have different effects on collagen processing. , 1985, , 56-90.		20
213	Altered triple helical structure of type I procollagen in lethal perinatal osteogenesis imperfecta Journal of Biological Chemistry, 1985, 260, 1734-1742.	3.4	196
214	Altered triple helical structure of type I procollagen in lethal perinatal osteogenesis imperfecta. Journal of Biological Chemistry, 1985, 260, 1734-42.	3.4	180
215	Invited editorial comment: Osteogenesis imperfecta: Update and perspective. American Journal of Medical Genetics Part A, 1984, 17, 429-435.	2.4	59
216	Cysteine in the triple-helical domain of one allelic product of the alpha 1(I) gene of type I collagen produces a lethal form of osteogenesis imperfecta Journal of Biological Chemistry, 1984, 259, 11129-11138.	3.4	179

#	Article	IF	CITATIONS
217	Cysteine in the triple-helical domain of one allelic product of the alpha 1(I) gene of type I collagen produces a lethal form of osteogenesis imperfecta. Journal of Biological Chemistry, 1984, 259, 11129-38.	3.4	148
218	PREGNANCY COMPLICATIONS IN TYPE IV EHLERS-DANLOS SYNDROME. Lancet, The, 1983, 321, 50-53.	13.7	130
219	Abnormal alpha 2-chain in type I collagen from a patient with a form of osteogenesis imperfecta Journal of Clinical Investigation, 1983, 71, 689-697.	8.2	88
220	Structural Abnormalities in the Dermal Collagen and Elastic Matrix from the Skin of Patients with Inherited Connective Tissue Disorders Journal of Investigative Dermatology, 1982, 79, 7s-16s.	0.7	122
221	Type I osteogenesis imperfecta: a nonfunctional allele for pro alpha 1 (I) chains of type I procollagen Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 3838-3842.	7.1	137
222	Molecular pathology in inherited disorders of collagen metabolism. Human Pathology, 1982, 13, 89-95.	2.0	18
223	Prenatal diagnosis of lethal perinatal osteogenesis imperfecta (OI Type II). Journal of Pediatrics, 1982, 100, 127-133.	1.8	64
224	Structural Abnormalities in the Dermal Collagen and Elastic Matrix from the Skin of Patients with Inherited Connective Tissue Disorders. Journal of Investigative Dermatology, 1982, 79, 7-16.	0.7	84
225	Genetic Disorders of Collagen Metabolism. , 1982, 12, 1-87.		46
	INHERITED DISORDERS OF COLLAGEN BIOSYNTHESIS**Supported in part by grants from the USPHS (AM) Tj E	[Qq0 0 0 rg	BT /Overlock
226	Foundation (6-298 and 6-312), a grant from the Osteogenesis Imperfecta Foundation, and a scholarship grant from the Poncin Fund. PHB is an Established Investigator of the American Heart Association; GSB		1
227	A predoctoral trainee of the Medica. , 1982, , 387-395. Marfan syndrome: abnormal alpha 2 chain in type I collagen Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 7745-7749.	7.1	112
228	Reduced secretion of structurally abnormal type I procollagen in a form of osteogenesis imperfecta Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 5142-5146.	7.1	167
229	Molecular Mechanisms of Connective Tissue Abnormalities in the Ehlers-Danlos Syndrome. Collagen and Related Research, 1981, 1, 475-489.	2.0	31
230	Peptide Mapping of Collagen Chains Using CNBr Cleavage of Proteins Within Polyacrylamide Gels. Collagen and Related Research, 1981, 1, 543-548.	2.0	60
231	Altered secretion of type III procollagen in a form of type IV Ehlers-Danlos syndrome. Biochemical studies in cultured fibroblasts. Laboratory Investigation, 1981, 44, 336-41.	3.7	28
232	Dermatosparaxis in a Himalayan Cat: II. Ultrastructural Studies of Dermal Collagen. Journal of Investigative Dermatology, 1980, 74, 100-104.	0.7	72
233	X-Linked Cutis Laxa. New England Journal of Medicine, 1980, 303, 61-65.	27.0	205
234	Clinical and ultrastructural heterogeneity of type IV Ehlers-Danlos syndrome. Human Genetics, 1979, 47, 141-150.	3.8	134

#	Article	IF	CITATIONS
235	Abnormal collagen fibril structure in the gravis form (type I) of Ehlers-Danlos syndrome. Laboratory Investigation, 1979, 40, 201-6.	3.7	48
236	A new variety of spondyloepiphyseal dysplasia characterized by punctate corneal dystrophy and abnormal dermal collagen fibrils. Human Genetics, 1978, 40, 157-169.	3.8	28
237	Electron microscopy as an aid to diagnosis of disorders of the extracellular matrix: a new type of spondyloepiphyseal dysplasia. Birth Defects: Original Article Series, 1978, 14, 221-32.	0.1	5
238	An X-linked form of cutis laxa due to deficiency of lysyl oxidase. Birth Defects: Original Article Series, 1976, 12, 293-8.	0.1	13
239	Interchain disulfide bonds in procollagen are located in a large nontriple-helical COOH-terminal domain Proceedings of the National Academy of Sciences of the United States of America, 1975, 72, 3009-3013.	7.1	96
240	Defect in Conversion of Procollagen to Collagen in a Form of Ehlers-Danlos Syndrome. Science, 1973, 182, 298-300.	12.6	266