Bernard Nisol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1334114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel 3D co-culture platform for integrating tissue interfaces for tumor growth, migration and therapeutic sensitivity: "PP-3D-S― Materials Science and Engineering C, 2022, 134, 112566.	7.3	8
2	Nanoporous Sponges as Carbon-Based Sorbents for Atmospheric Water Generation. Industrial & Engineering Chemistry Research, 2021, 60, 12923-12933.	3.7	13
3	Organic coatings from acetylene at atmospheric pressure: UV light versus plasma. Plasma Processes and Polymers, 2021, 18, 2000211.	3.0	0
4	Energetics of reactions in a dielectric barrier discharge with argon carrier gas: VIII hydrofluoromethanes. Plasma Processes and Polymers, 2020, 17, 1900125.	3.0	1
5	Largeâ€area atmospheric pressure dielectric barrier discharges in Ar–HMDSO mixtures: Experiments and fluid modelling. Plasma Processes and Polymers, 2020, 17, 1900169.	3.0	17
6	Use of remote atmospheric mass spectrometry in atmospheric plasma polymerization of hydrophilic and hydrophobic coatings. Plasma Processes and Polymers, 2020, 17, 1900250.	3.0	4
7	Energetics of Noble Gas Dielectric Barrier Discharges: Novel Results Related to Electrode Areas and Dielectric Materials. IEEE Transactions on Plasma Science, 2019, 47, 2680-2688.	1.3	4
8	Energy conversion efficiency in low- and atmospheric-pressure plasma polymerization processes with hydrocarbons. Physical Chemistry Chemical Physics, 2019, 21, 8698-8708.	2.8	17
9	Energetics of reactions in a dielectric barrier discharge with argon carrier gas: VII anhydrides. Plasma Processes and Polymers, 2019, 16, 1800186.	3.0	4
10	Cold plasma oxidation of harmful algae and associated metabolite BMAA toxin in aqueous suspension. Plasma Processes and Polymers, 2019, 16, 1800137.	3.0	12
11	Energetics of reactions in a dielectric barrier discharge with argon carrier gas: VI PEGâ€like coatings. Plasma Processes and Polymers, 2018, 15, 1700132.	3.0	9
12	Energetics of reactions in a dielectric barrier discharge with argon carrier gas: V hydrocarbons. Plasma Processes and Polymers, 2017, 14, 1600191.	3.0	10
13	Energy Conversion Efficiency in Low- and Atmospheric-Pressure Plasma Polymerization Processes, Part II: HMDSO. Plasma Chemistry and Plasma Processing, 2017, 37, 257-271.	2.4	35
14	Easy Synthesis of Ageing-Resistant Coatings with Tunable Wettability by Atmospheric Pressure Plasma. Plasma Chemistry and Plasma Processing, 2016, 36, 1239-1252.	2.4	13
15	Energy of Reactions in Atmosphericâ€Pressure Plasma Polymerization with Inert Carrier Gas. Plasma Processes and Polymers, 2016, 13, 366-374.	3.0	34
16	Energy Conversion Efficiency in Plasma Polymerization – A Comparison of Low―and Atmosphericâ€Pressure Processes. Plasma Processes and Polymers, 2016, 13, 834-842.	3.0	31
17	Energetics of reactions in a dielectric barrier discharge with argon carrier gas: IV ethyl lactate. Plasma Processes and Polymers, 2016, 13, 965-969.	3.0	13
18	Growth and characterization of WSe2 single crystals using TeCl4 as transport agent. Journal of Crystal Growth, 2016, 453, 111-118.	1.5	10

BERNARD NISOL

#	Article	IF	CITATIONS
19	Energetics of Reactions in a Dielectric Barrier Discharge with Argon Carrier Gas: II Mixtures with Different Molecules. Plasma Processes and Polymers, 2016, 13, 557-564.	3.0	25
20	Energetics of Reactions in a Dielectric Barrier Discharge with Argon Carrier Gas: III Esters. Plasma Processes and Polymers, 2016, 13, 900-907.	3.0	18
21	Epiâ€fluorescence Microscopy as a Tool for Relative Quantification of the Antiâ€Biofouling Character of Atmospheric Pressure Plasmaâ€Polymerized Biomaterials. Plasma Processes and Polymers, 2015, 12, 991-1001.	3.0	6
22	Challenges in the characterization of plasma polymers using XPS. Journal of Electron Spectroscopy and Related Phenomena, 2015, 200, 311-331.	1.7	40
23	Precise energy and temperature measurements in dielectric barrier discharges at atmospheric pressure. Plasma Sources Science and Technology, 2015, 24, 045004.	3.1	39
24	Evaluation of the Yasuda parameter for the atmospheric plasma deposition of allyl methacrylate. RSC Advances, 2015, 5, 27449-27457.	3.6	35
25	Energetics of Molecular Excitation, Fragmentation, and Polymerization in a Dielectric Barrier Discharge with Argon Carrier Gas. Langmuir, 2015, 31, 10125-10129.	3.5	21
26	Incorporation of corrosion inhibitor in plasma polymerized allyl methacrylate coatings and evaluation of its corrosion performance. Surface and Coatings Technology, 2014, 259, 714-724.	4.8	8
27	About the Influence of Double Bonds in the APPECVD of Acrylateâ€Like Precursors: A Mass Spectrometry Study of the Plasma Phase. Plasma Processes and Polymers, 2014, 11, 335-344.	3.0	18
28	Plasma Polymerization of a Saturated Branched Hydrocarbon. The Case of Heptamethylnonane. Plasma Processes and Polymers, 2013, 10, 51-59.	3.0	15
29	The Impact of Double Bonds in the APPECVD of Acrylate-Like Precursors. Plasma Processes and Polymers, 2013, 10, 857-863.	3.0	27
30	Surface Characterization of Atmospheric Pressure Plasmaâ€Deposited Allyl Methacrylate and Acrylic Acid Based Coatings. Plasma Processes and Polymers, 2013, 10, 564-571.	3.0	27
31	Deposition and Characterisation of Plasma Polymerised Allyl Methacrylate Based Coatings. Plasma Processes and Polymers, 2012, 9, 799-807.	3.0	21
32	Poly(ethylene glycol) Films Deposited by Atmospheric Pressure Plasma Liquid Deposition and Atmospheric Pressure Plasmaâ€Enhanced Chemical Vapour Deposition: Process, Chemical Composition Analysis and Biocompatibility. Plasma Processes and Polymers, 2010, 7, 715-725.	3.0	55
33	Plasmaâ€Modified PTFE for Biological Applications: Correlation between Proteinâ€Resistant Properties and Surface Characteristics. Plasma Processes and Polymers, 2008, 5, 661-671.	3.0	59