
Christina Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1333349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 2010, 11, 97-105.	1.2	1,039
2	Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 2018, 359, 466-469.	6.0	783
3	Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142620.	1.2	467
4	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	3.0	364
5	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	3.3	243
6	Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. , 2011, 21, 1772-1781.		221
7	Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. Journal of Applied Ecology, 2011, 48, 570-579.	1.9	205
8	Harnessing the biodiversity value of Central and Eastern European farmland. Diversity and Distributions, 2015, 21, 722-730.	1.9	172
9	A comprehensive analysis of autocorrelation and bias in home range estimation. Ecological Monographs, 2019, 89, e01344.	2.4	127
10	The former Iron Curtain still drives biodiversity–profit trade-offs in German agriculture. Nature Ecology and Evolution, 2017, 1, 1279-1284.	3.4	114
11	Response of ground-nesting farmland birds to agricultural intensification across Europe: Landscape and field level management factors. Biological Conservation, 2012, 152, 74-80.	1.9	86
12	Small mammals in agricultural landscapes: Opposing responses to farming practices and landscape complexity. Biological Conservation, 2011, 144, 1130-1136.	1.9	80
13	Mixed effects of landscape structure and farming practice on bird diversity. Agriculture, Ecosystems and Environment, 2011, 141, 119-125.	2.5	64
14	Right on track? Performance of satellite telemetry in terrestrial wildlife research. PLoS ONE, 2019, 14, e0216223.	1.1	52
15	Landscape composition influences farm management effects on farmland birds in winter: A pan-European approach. Agriculture, Ecosystems and Environment, 2010, 139, 571-577.	2.5	51
16	Effects of body size on estimation of mammalian area requirements. Conservation Biology, 2020, 34, 1017-1028.	2.4	51
17	â€~Wild' in the city context: Do relative wild areas offer opportunities for urban biodiversity?. Landscape and Urban Planning, 2018, 170, 256-265.	3.4	47
18	Predicting spatial and temporal habitat use of rodents in a highly intensive agricultural area. Agriculture, Ecosystems and Environment, 2014, 189, 145-153.	2.5	45

CHRISTINA FISCHER

#	Article	IF	CITATIONS
19	Mixed effects of landscape complexity and farming practice on weed seed removal. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 297-303.	1.1	41
20	Ecosystem services and disservices provided by small rodents in arable fields: Effects of local and landscape management. Journal of Applied Ecology, 2018, 55, 548-558.	1.9	39
21	The βâ€diversity of arable weed communities on organic and conventional cereal farms in two contrasting regions. Applied Vegetation Science, 2012, 15, 571-579.	0.9	36
22	Taxonomic and functional diversity of farmland bird communities across Europe: effects of biogeography and agricultural intensification. Biodiversity and Conservation, 2011, 20, 3663-3681.	1.2	34
23	The impact of hedge-forest connectivity and microhabitat conditions on spider and carabid beetle assemblages in agricultural landscapes. Journal of Insect Conservation, 2013, 17, 1027-1038.	0.8	33
24	Landscape-moderated bird nest predation in hedges and forest edges. Acta Oecologica, 2012, 45, 50-56.	0.5	32
25	Species' traits influence ground beetle responses to farm and landscape level agricultural intensification in Europe. Journal of Insect Conservation, 2014, 18, 837-846.	0.8	31
26	Habitat selection by the European hare in arable landscapes: The importance of smallâ€scale habitat structure for conservation. Ecology and Evolution, 2018, 8, 11619-11633.	0.8	30
27	Can agri-environmental schemes enhance non-target species? Effects of sown wildflower fields on the common hamster (Cricetus cricetus) at local and landscape scales. Biological Conservation, 2016, 194, 168-175.	1.9	27
28	Contrasting effect of isolation of hedges from forests on farmland vs. woodland birds. Community Ecology, 2012, 13, 155-161.	0.5	26
29	Spatiotemporal variability in resources affects herbivore home range formation in structurally contrasting and unpredictable agricultural landscapes. Landscape Ecology, 2018, 33, 1505-1517.	1.9	26
30	Forest specialist and generalist small mammals in forest edges and hedges. Wildlife Biology, 2016, 22, 86-94.	0.6	25
31	Seed preferences by rodents in the agriâ€environment and implications for biological weed control. Ecology and Evolution, 2016, 6, 5796-5807.	0.8	24
32	Seasonal effects of habitat structure and weather on the habitat selection and home range size of a mammal in agricultural landscapes. Landscape Ecology, 2019, 34, 2279-2294.	1.9	23
33	How do agricultural practices affect the movement behaviour of European brown hares (Lepus) Tj ETQq1 1 0.78	4314 rgB ⁻ 2.5	T /Overlock 10
34	Reintroduction of rare arable plants by seed transfer. What are the optimal sowing rates?. Ecology and Evolution, 2016, 6, 5506-5516.	0.8	18
35	Movement ecology of Afrotropical birds: Functional traits provide complementary insights to species identity. Biotropica, 2019, 51, 894-902.	0.8	15
36	Agricultural intensification at local and landscape scales impairs farmland birds, but not skylarks (Alauda arvensis). Agriculture, Ecosystems and Environment, 2019, 277, 21-24.	2.5	13

CHRISTINA FISCHER

#	Article	IF	CITATIONS
37	Impacts of roads on bird species richness: A meta-analysis considering road types, habitats and feeding guilds. Science of the Total Environment, 2022, 812, 151478.	3.9	13
38	Population restoration of the nocturnal bird Athene noctua in Western Europe: an example of evidence based species conservation. Biodiversity and Conservation, 2015, 24, 1743-1753.	1.2	11
39	A Kenyan endemic bird species Turdoides hindei at home in invasive thickets. Basic and Applied Ecology, 2015, 16, 180-188.	1.2	10
40	Restricted movements and high site fidelity in three East African cloud-forest birds. Journal of Tropical Ecology, 2016, 32, 83-87.	0.5	10
41	Herbaceous Legume Encroachment Reduces Grass Productivity and Density in Arid Rangelands. PLoS ONE, 2016, 11, e0166743.	1.1	9
42	Kenyan endemic bird species at home in novel ecosystem. Ecology and Evolution, 2016, 6, 2494-2505.	0.8	8
43	Effects of rare arable plants on flower-visiting wild bees in agricultural fields. Agriculture, Ecosystems and Environment, 2022, 323, 107685.	2.5	7
44	Weeds and endangered herbs have unforeseen dispersal helpers in the agri-environment: gastropods and earthworms. Renewable Agriculture and Food Systems, 2013, 28, 380-383.	0.8	6
45	Effects of rare arable plants on plant diversity, productivity and soil fertility in agricultural fields. Agriculture, Ecosystems and Environment, 2021, 307, 107237.	2.5	6
46	Seasonal and temporal patterns of rainfall shape arthropod community composition and multi-trophic interactions in an arid environment. Scientific Reports, 2022, 12, 3742.	1.6	6
47	The contribution of roadsides to connect grassland habitat patches for butterflies in landscapes of contrasting permeability. Journal of Environmental Management, 2022, 311, 114846.	3.8	6
48	Evaluating expertâ€based habitat suitability information of terrestrial mammals with <scp>GPSâ€</scp> tracking data. Global Ecology and Biogeography, 2022, 31, 1526-1541.	2.7	6
49	Beyond prime areas of nature protection in East Africa: conservation ecology of a narrowly distributed Kenyan endemic bird species. Biodiversity and Conservation, 2015, 24, 3071-3082.	1.2	5
50	A dominance shift in arid savanna: An herbaceous legume outcompetes local C ₄ grasses. Ecology and Evolution, 2018, 8, 6779-6787.	0.8	5
51	How does the seed fate of Crotalaria podocarpa DC, a highly competitive herbaceous legume in arid rangelands, contribute to its establishment probability?. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 405-411.	1.1	4
52	Large carabids enhance weed seed removal in organic fields and in large-scale, but not small-scale agriculture. Landscape Ecology, 2021, 36, 427-438.	1.9	4
53	Using indicator species to detect high quality habitats in an East African forest biodiversity hotspot. Biodiversity and Conservation, 2021, 30, 903-915.	1.2	3
54	Comparison between telemetry and spot-mapping to determine space use of the Kenyan endemic Hinde's babbler. Journal of Tropical Ecology, 2018, 34, 395-399.	0.5	2

#	Article	IF	CITATIONS
55	Land scarcity, communication gaps and institutional confusions influence the loss of biodiversity in south-eastern Kenya. Biodiversity and Conservation, 2020, 29, 3835-3841.	1.2	2
56	Rolling pits of Hartmann's mountain zebra (Zebra equus hartmannae) increase vegetation diversity and landscape heterogeneity in the Preâ€Namib. Ecology and Evolution, 2021, 11, 13036-13051.	0.8	2
57	Seed traits matter—Endozoochoric dispersal through a pervasive mobile linker. Ecology and Evolution, 2021, 11, 18477-18491.	0.8	2