Bumjoon J Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1333273/publications.pdf Version: 2024-02-01

RUMIOON LKIM

#	Article	IF	CITATIONS
1	Flexible, highly efficient all-polymer solar cells. Nature Communications, 2015, 6, 8547.	5.8	740
2	Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells. Chemical Reviews, 2019, 119, 8028-8086.	23.0	566
3	Control of Nanoparticle Location in Block Copolymers. Journal of the American Chemical Society, 2005, 127, 5036-5037.	6.6	550
4	From Fullerene–Polymer to All-Polymer Solar Cells: The Importance of Molecular Packing, Orientation, and Morphology Control. Accounts of Chemical Research, 2016, 49, 2424-2434.	7.6	407
5	The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance. Journal of the American Chemical Society, 2008, 130, 16324-16329.	6.6	394
6	Determining the Role of Polymer Molecular Weight for High-Performance All-Polymer Solar Cells: Its Effect on Polymer Aggregation and Phase Separation. Journal of the American Chemical Society, 2015, 137, 2359-2365.	6.6	347
7	Effect of Areal Chain Density on the Location of Polymer-Modified Gold Nanoparticles in a Block Copolymer Template. Macromolecules, 2006, 39, 4108-4114.	2.2	293
8	Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature, 2022, 601, 217-222.	13.7	290
9	Highâ€Performance Allâ€Polymer Solar Cells Via Sideâ€Chain Engineering of the Polymer Acceptor: The Importance of the Polymer Packing Structure and the Nanoscale Blend Morphology. Advanced Materials, 2015, 27, 2466-2471.	11.1	279
10	Photocrosslinkable Polythiophenes for Efficient, Thermally Stable, Organic Photovoltaics. Advanced Functional Materials, 2009, 19, 2273-2281.	7.8	255
11	Nanoparticle-Induced Phase Transitions in Diblock-Copolymer Films. Advanced Materials, 2005, 17, 2618-2622.	11.1	225
12	Striped, Ellipsoidal Particles by Controlled Assembly of Diblock Copolymers. Journal of the American Chemical Society, 2013, 135, 6649-6657.	6.6	220
13	Hybrid Particle-Field Simulations of Polymer Nanocomposites. Physical Review Letters, 2006, 96, 250601.	2.9	219
14	Tuning Mechanical and Optoelectrical Properties of Poly(3-hexylthiophene) through Systematic Regioregularity Control. Macromolecules, 2015, 48, 4339-4346.	2.2	194
15	Creating Surfactant Nanoparticles for Block Copolymer Composites through Surface Chemistry. Langmuir, 2007, 23, 12693-12703.	1.6	182
16	Effect of Addition of a Diblock Copolymer on Blend Morphology and Performance of Poly(3-hexylthiophene):Perylene Diimide Solar Cells. Chemistry of Materials, 2009, 21, 1775-1777.	3.2	171
17	Effects of Solubilizing Group Modification in Fullerene Bis-Adducts on Normal and Inverted Type Polymer Solar Cells. Chemistry of Materials, 2012, 24, 2373-2381.	3.2	166
18	Nanoparticle Surfactants as a Route to Bicontinuous Block Copolymer Morphologies. Langmuir, 2007, 23, 7804-7809.	1.6	160

#	Article	IF	CITATIONS
19	Efficient Colorimetric pH Sensor Based on Responsive Polymer–Quantum Dot Integrated Graphene Oxide. ACS Nano, 2014, 8, 2848-2856.	7.3	158
20	Design of terpolymers as electron donors for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 15252.	5.2	155
21	Side Chain Optimization of Naphthalenediimide–Bithiopheneâ€Based Polymers to Enhance the Electron Mobility and the Performance in Allâ€Polymer Solar Cells. Advanced Functional Materials, 2016, 26, 1543-1553.	7.8	155
22	Solvent-Resistant Organic Transistors and Thermally Stable Organic Photovoltaics Based on Cross-linkable Conjugated Polymers. Chemistry of Materials, 2012, 24, 215-221.	3.2	154
23	Controlling Molecular Orientation of Naphthalenediimideâ€Based Polymer Acceptors for High Performance Allâ€Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600504.	10.2	152
24	Sequentially Fluorinated PTAA Polymers for Enhancing <i>V</i> _{OC} of Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1801668.	10.2	151
25	Regioregular Narrowâ€Bandgap nâ€Type Polymers with High Electron Mobility Enabling Highly Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2021, 33, e2102635.	11.1	151
26	Eco-Friendly Polymer Solar Cells: Advances in Green-Solvent Processing and Material Design. ACS Nano, 2020, 14, 14493-14527.	7.3	150
27	Distribution of Nanoparticles in Lamellar Domains of Block Copolymers. Macromolecules, 2007, 40, 3361-3365.	2.2	145
28	Highâ€Performance Longâ€Termâ€Stable Dopantâ€Free Perovskite Solar Cells and Additiveâ€Free Organic Solar Cells by Employing Newly Designed Multirole I€â€Conjugated Polymers. Advanced Materials, 2017, 29, 1700183.	11.1	141
29	Multidimensional Design of Anisotropic Polymer Particles from Solventâ€Evaporative Emulsion. Advanced Functional Materials, 2018, 28, 1802961.	7.8	140
30	Importance of Optimal Composition in Random Terpolymer-Based Polymer Solar Cells. Macromolecules, 2013, 46, 6806-6813.	2.2	137
31	Size-Controlled Nanoparticle-Guided Assembly of Block Copolymers for Convex Lens-Shaped Particles. Journal of the American Chemical Society, 2014, 136, 9982-9989.	6.6	132
32	Importance of Electron Transport Ability in Naphthalene Diimide-Based Polymer Acceptors for High-Performance, Additive-Free, All-Polymer Solar Cells. Chemistry of Materials, 2015, 27, 5230-5237.	3.2	131
33	Determining Optimal Crystallinity of Diketopyrrolopyrrole-Based Terpolymers for Highly Efficient Polymer Solar Cells and Transistors. Chemistry of Materials, 2014, 26, 6963-6970.	3.2	130
34	Site Isolation in Phosphorescent Bichromophoric Block Copolymers Designed for White Electroluminescence. Advanced Materials, 2010, 22, 77-82.	11.1	129
35	Effect of Polymer Ligand Molecular Weight on Polymer-Coated Nanoparticle Location in Block Copolymers. Macromolecules, 2008, 41, 436-447.	2.2	124
36	Morphological Evolution of Block Copolymer Particles: Effect of Solvent Evaporation Rate on Particle Shape and Morphology. ACS Nano, 2017, 11, 2133-2142.	7.3	123

#	Article	IF	CITATIONS
37	Efficient, Thermally Stable, and Mechanically Robust Allâ€Polymer Solar Cells Consisting of the Same Benzodithiophene Unitâ€Based Polymer Acceptor and Donor with High Molecular Compatibility. Advanced Energy Materials, 2021, 11, 2003367.	10.2	122
38	New Thermally Cross-Linkable Polymer and Its Application as a Hole-Transporting Layer for Solution Processed Multilayer Organic Light Emitting Diodes. Chemistry of Materials, 2007, 19, 4827-4832.	3.2	121
39	Metal Halide Regulated Photophysical Tuning of Zeroâ€Dimensional Organic Metal Halide Hybrids: From Efficient Phosphorescence to Ultralong Afterglow. Angewandte Chemie - International Edition, 2020, 59, 23067-23071.	7.2	120
40	Comparative Study of Thermal Stability, Morphology, and Performance of All-Polymer, Fullerene–Polymer, and Ternary Blend Solar Cells Based on the Same Polymer Donor. Macromolecules, 2017, 50, 6861-6871.	2.2	118
41	100th Anniversary of Macromolecular Science Viewpoint: Block Copolymer Particles: Tuning Shape, Interfaces, and Morphology. ACS Macro Letters, 2020, 9, 306-317.	2.3	118
42	Importance of Critical Molecular Weight of Semicrystalline n-Type Polymers for Mechanically Robust, Efficient Electroactive Thin Films. Chemistry of Materials, 2019, 31, 3163-3173.	3.2	115
43	Sideâ€Chain Fluorination: An Effective Approach to Achieving Highâ€Performance Allâ€Polymer Solar Cells with Efficiency Exceeding 7%. Advanced Materials, 2016, 28, 10016-10023.	11.1	108
44	Effect of Humidity on the Ordering of PEO-Based Copolymer Thin Films. Macromolecules, 2007, 40, 7019-7025.	2.2	106
45	High-Performance All-Polymer Solar Cells Based on Face-On Stacked Polymer Blends with Low Interfacial Tension. ACS Macro Letters, 2014, 3, 1009-1014.	2.3	106
46	Facile Synthesis ofo-Xylenyl Fullerene Multiadducts for High Open Circuit Voltage and Efficient Polymer Solar Cells. Chemistry of Materials, 2011, 23, 5090-5095.	3.2	104
47	Influence of Acceptor Type and Polymer Molecular Weight on the Mechanical Properties of Polymer Solar Cells. Chemistry of Materials, 2019, 31, 9057-9069.	3.2	102
48	Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere. Energy and Environmental Science, 0, , .	15.6	102
49	Flexible-spacer incorporated polymer donors enable superior blend miscibility for high-performance and mechanically-robust polymer solar cells. Energy and Environmental Science, 2021, 14, 4067-4076.	15.6	98
50	Influence of Alkyl Substitution Pattern in Thiophene Copolymers on Composite Fullerene Solar Cell Performance. Macromolecules, 2007, 40, 7425-7428.	2.2	97
51	Correlation between Phase-Separated Domain Sizes of Active Layer and Photovoltaic Performances in All-Polymer Solar Cells. Macromolecules, 2016, 49, 5051-5058.	2.2	93
52	Particles with Tunable Porosity and Morphology by Controlling Interfacial Instability in Block Copolymer Emulsions. ACS Nano, 2016, 10, 5243-5251.	7.3	92
53	Soft Patchy Particles of Block Copolymers from Interface-Engineered Emulsions. ACS Nano, 2015, 9, 11333-11341.	7.3	91
54	Light-Responsive, Shape-Switchable Block Copolymer Particles. Journal of the American Chemical Society, 2019, 141, 15348-15355.	6.6	90

#	Article	IF	CITATIONS
55	Controlling Number of Indene Solubilizing Groups in Multiadduct Fullerenes for Tuning Optoelectronic Properties and Open-Circuit Voltage in Organic Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 110-116.	4.0	89
56	Polymer Acceptors with Flexible Spacers Afford Efficient and Mechanically Robust Allâ€Polymer Solar Cells. Advanced Materials, 2022, 34, e2107361.	11.1	89
57	Influence of intermolecular interactions of electron donating small molecules on their molecular packing and performance in organic electronic devices. Journal of Materials Chemistry A, 2013, 1, 14538.	5.2	86
58	Switchable Full-Color Reflective Photonic Ellipsoidal Particles. Journal of the American Chemical Society, 2020, 142, 10424-10430.	6.6	85
59	One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Nature Communications, 2018, 9, 79.	5.8	84
60	Prediction of Lower Limb Kinetics and Kinematics during Walking by a Single IMU on the Lower Back Using Machine Learning. Sensors, 2020, 20, 130.	2.1	84
61	Architectural Engineering of Rod–Coil Compatibilizers for Producing Mechanically and Thermally Stable Polymer Solar Cells. ACS Nano, 2014, 8, 10461-10470.	7.3	82
62	Shape-Tunable Biphasic Janus Particles as pH-Responsive Switchable Surfactants. Macromolecules, 2017, 50, 9276-9285.	2.2	80
63	Comparative Study of the Mechanical Properties of All-Polymer and Fullerene–Polymer Solar Cells: The Importance of Polymer Acceptors for High Fracture Resistance. Chemistry of Materials, 2018, 30, 2102-2111.	3.2	79
64	A 3D Hierarchical Host with Enhanced Sodiophilicity Enabling Anodeâ€Free Sodiumâ€Metal Batteries. Advanced Materials, 2022, 34, e2109767.	11.1	79
65	Free-Standing Nanocomposite Multilayers with Various Length Scales, Adjustable Internal Structures, and Functionalities. Journal of the American Chemical Society, 2009, 131, 2579-2587.	6.6	77
66	Fluorescent and pH-responsive diblock copolymer-coated core–shell CdSe/ZnS particles for a color-displaying, ratiometric pH sensor. Chemical Communications, 2011, 47, 10272.	2.2	76
67	Precise Control of Quantum Dot Location within the P3HT- <i>b</i> -P2VP/QD Nanowires Formed by Crystallization-Driven 1D Growth of Hybrid Dimeric Seeds. Journal of the American Chemical Society, 2014, 136, 2767-2774.	6.6	76
68	Surface Engineering of Graphene Quantum Dots and Their Applications as Efficient Surfactants. ACS Applied Materials & Interfaces, 2015, 7, 8615-8621.	4.0	76
69	Shape and Color Switchable Block Copolymer Particles by Temperature and pH Dual Responses. ACS Nano, 2019, 13, 4230-4237.	7.3	76
70	Shift of the Branching Point of the Sideâ€Chain in Naphthalenediimide (NDI)â€Based Polymer for Enhanced Electron Mobility and Allâ€Polymer Solar Cell Performance. Advanced Functional Materials, 2018, 28, 1803613.	7.8	74
71	Controlled Ordering of Block Copolymer Thin Films by the Addition of Hydrophilic Nanoparticles. Macromolecules, 2007, 40, 8119-8124.	2.2	73
72	Multifunctional Crosslinkable Iridium Complexes as Hole Transporting/Electron Blocking and Emitting Materials for Solutionâ€Processed Multilayer Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2009, 19, 1024-1031.	7.8	73

#	Article	IF	CITATIONS
73	Gold-Decorated Block Copolymer Microspheres with Controlled Surface Nanostructures. ACS Nano, 2012, 6, 2750-2757.	7.3	72
74	Facile Au catalyst loading on the inner shell of hollow SnO ₂ spheres using Au-decorated block copolymer sphere templates and their selective H ₂ S sensing characteristics. Nanoscale, 2014, 6, 11898-11903.	2.8	72
75	Monodipserse Nanostructured Spheres of Block Copolymers and Nanoparticles via Cross-Flow Membrane Emulsification. Chemistry of Materials, 2015, 27, 6314-6321.	3.2	72
76	Facile Synthesis of Thermally Stable Coreâ^'Shell Gold Nanoparticles via Photo-Cross-Linkable Polymeric Ligands. Macromolecules, 2010, 43, 3570-3575.	2.2	71
77	Au@Polymer Core–Shell Nanoparticles for Simultaneously Enhancing Efficiency and Ambient Stability of Organic Optoelectronic Devices. ACS Applied Materials & Interfaces, 2014, 6, 16956-16965.	4.0	71
78	Engineering the Shape of Block Copolymer Particles by Surface-Modulated Graphene Quantum Dots. Chemistry of Materials, 2016, 28, 830-837.	3.2	71
79	Impact of the photo-induced degradation of electron acceptors on the photophysics, charge transport and device performance of all-polymer and fullerene–polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 22170-22179.	5.2	71
80	Stimuliâ€Responsive, Shapeâ€Transforming Nanostructured Particles. Advanced Materials, 2017, 29, 1700608.	11.1	71
81	Proximity Injection of Plasticizing Molecules to Self-Assembling Polymers for Large-Area, Ultrafast Nanopatterning in the Sub-10-nm Regime. ACS Nano, 2013, 7, 6747-6757.	7.3	70
82	Design of Cyanovinyleneâ€Containing Polymer Acceptors with Large Dipole Moment Change for Efficient Charge Generation in Highâ€Performance Allâ€Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1701436.	10.2	70
83	Effect of Fullerene Tris-adducts on the Photovoltaic Performance of P3HT:Fullerene Ternary Blends. ACS Applied Materials & Interfaces, 2013, 5, 4401-4408.	4.0	69
84	Intrinsically Stretchable Organic Solar Cells with Efficiencies of over 11%. ACS Energy Letters, 2021, 6, 2512-2518.	8.8	69
85	Bipolar Copolymers as Host for Electroluminescent Devices:Â Effects of Molecular Structure on Film Morphology and Device Performance. Macromolecules, 2007, 40, 8156-8161.	2.2	68
86	Facile Photoâ€Crosslinking of Azideâ€Containing Holeâ€Transporting Polymers for Highly Efficient, Solutionâ€Processed, Multilayer Organic Light Emitting Devices. Advanced Functional Materials, 2014, 24, 7588-7596.	7.8	68
87	Origin of the High Donor–Acceptor Composition Tolerance in Device Performance and Mechanical Robustness of All-Polymer Solar Cells. Chemistry of Materials, 2020, 32, 582-594.	3.2	68
88	Multicolor Emitting Block Copolymer-Integrated Graphene Quantum Dots for Colorimetric, Simultaneous Sensing of Temperature, pH, and Metal Ions. Chemistry of Materials, 2015, 27, 5288-5294.	3.2	67
89	Importance of 2D Conjugated Side Chains of Benzodithiophene-Based Polymers in Controlling Polymer Packing, Interfacial Ordering, and Composition Variations of All-Polymer Solar Cells. Chemistry of Materials, 2017, 29, 9407-9415.	3.2	67
90	Material Design and Device Fabrication Strategies for Stretchable Organic Solar Cells. Advanced Materials, 2022, 34, .	11.1	67

#	Article	IF	CITATIONS
91	Size-Controlled Polymer-Coated Nanoparticles as Efficient Compatibilizers for Polymer Blends. Macromolecules, 2011, 44, 9852-9862.	2.2	66
92	Novel Templating Route Using Pt Infiltrated Block Copolymer Microparticles for Catalytic Pt Functionalized Macroporous WO ₃ Nanofibers and Its Application in Breath Pattern Recognition. ACS Sensors, 2016, 1, 1124-1131.	4.0	66
93	Controlling Energy Levels and Blend Morphology for All-Polymer Solar Cells via Fluorination of a Naphthalene Diimide-Based Copolymer Acceptor. Macromolecules, 2016, 49, 6374-6383.	2.2	66
94	Highly Efficient and Stable Perovskite Solar Cells Enabled by Lowâ€Cost Industrial Organic Pigment Coating. Angewandte Chemie - International Edition, 2021, 60, 2485-2492.	7.2	66
95	Multicolor Emission of Hybrid Block Copolymer–Quantum Dot Microspheres by Controlled Spatial Isolation of Quantum Dots. Small, 2013, 9, 2667-2672.	5.2	65
96	High-Crystalline Medium-Band-Gap Polymers Consisting of Benzodithiophene and Benzotriazole Derivatives for Organic Photovoltaic Cells. ACS Applied Materials & Interfaces, 2013, 5, 12820-12831.	4.0	64
97	Freestanding and Arrayed Nanoporous Microcylinders for Highly Active 3D SERS Substrate. Chemistry of Materials, 2013, 25, 2421-2426.	3.2	64
98	Naphthalene Diimide-Based Terpolymers with Controlled Crystalline Properties for Producing High Electron Mobility and Optimal Blend Morphology in All-Polymer Solar Cells. Chemistry of Materials, 2020, 32, 2572-2582.	3.2	64
99	Ethanol-Processable, Highly Crystalline Conjugated Polymers for Eco-Friendly Fabrication of Organic Transistors and Solar Cells. Macromolecules, 2017, 50, 4415-4424.	2.2	63
100	Ionic Liquid-Carbon Nanotube Sensor Arrays for Human Breath Related Volatile Organic Compounds. ACS Sensors, 2018, 3, 2432-2437.	4.0	63
101	Shape-Anisotropic Diblock Copolymer Particles from Evaporative Emulsions: Experiment and Theory. Macromolecules, 2019, 52, 1150-1157.	2.2	61
102	Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy and Environmental Science, 2020, 13, 4921-4929.	15.6	61
103	Methoxy-Functionalized Triarylamine-Based Hole-Transporting Polymers for Highly Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3304-3313.	8.8	59
104	Importance of End-Group Structure in Controlling the Interfacial Activity of Polymer-Coated Nanoparticles. Macromolecules, 2007, 40, 1796-1798.	2.2	58
105	Tailoring Coreâ^'Shell Polymer-Coated Nanoparticles as Block Copolymer Surfactants. Macromolecules, 2009, 42, 6193-6201.	2.2	58
106	Photoinduced Charge Transfer in Donor–Acceptor (DA) Copolymer: Fullerene Bis-adduct Polymer Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 861-868.	4.0	58
107	Controlling the Orientation of Block Copolymer Thin Films using Thermally-Stable Gold Nanoparticles with Tuned Surface Chemistry. Macromolecules, 2011, 44, 9356-9365.	2.2	57
108	Highly Sensitive and Selective Liquidâ€Phase Sensors Based on a Solventâ€Resistant Organicâ€Transistor Platform. Advanced Materials, 2015, 27, 1540-1546.	11.1	57

#	Article	IF	CITATIONS
109	The Impact of Sequential Fluorination of Ï€â€Conjugated Polymers on Charge Generation in Allâ€Polymer Solar Cells. Advanced Functional Materials, 2017, 27, 1701256.	7.8	55
110	Importance of Optimal Crystallinity and Hole Mobility of BDTâ€Based Polymer Donor for Simultaneous Enhancements of <i>V</i> _{oc} , <i>J</i> _{sc} , and FF in Efficient Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2005787.	7.8	55
111	Photoswitchable Surfactant-Driven Reversible Shape- and Color-Changing Block Copolymer Particles. Journal of the American Chemical Society, 2021, 143, 13333-13341.	6.6	55
112	Mechanically robust and high-performance ternary solar cells combining the merits of all-polymer and fullerene blends. Journal of Materials Chemistry A, 2018, 6, 4494-4503.	5.2	54
113	Cyanoâ€Functionalized nâ€Type Polymer with High Electron Mobility for Highâ€Performance Organic Electrochemical Transistors. Advanced Materials, 2022, 34, e2201340.	11.1	54
114	Interfacial Roughening Induced by the Reaction of End-Functionalized Polymers at a PS/P2VP Interface:Â Quantitative Analysis by DSIMS. Macromolecules, 2005, 38, 6106-6114.	2.2	53
115	Efficient and Airâ€6table Aqueousâ€Processed Organic Solar Cells and Transistors: Impact of Water Addition on Processability and Thinâ€Film Morphologies of Electroactive Materials. Advanced Energy Materials, 2018, 8, 1802674.	10.2	52
116	Effect of Incorporated Nitrogens on the Planarity and Photovoltaic Performance of Donor–Acceptor Copolymers. Macromolecules, 2012, 45, 6415-6423.	2.2	51
117	Colorimetric Thermometer from Graphene Oxide Platform Integrated with Red, Green, and Blue Emitting, Responsive Block Copolymers. Chemistry of Materials, 2016, 28, 3446-3453.	3.2	51
118	Development of Shape-Tuned, Monodisperse Block Copolymer Particles through Solvent-Mediated Particle Restructuring. Chemistry of Materials, 2019, 31, 1066-1074.	3.2	51
119	Mantis shrimp–inspired organic photodetector for simultaneous hyperspectral and polarimetric imaging. Science Advances, 2021, 7, .	4.7	51
120	The effect of side-chain length on regioregular poly[3-(4-n-alkyl)phenylthiophene]/PCBM and ICBA polymer solar cells. Journal of Materials Chemistry, 2012, 22, 14236.	6.7	50
121	Microcapsules Containing pH-Responsive, Fluorescent Polymer-Integrated MoS ₂ : An Effective Platform for in Situ pH Sensing and Photothermal Heating. ACS Applied Materials & Interfaces, 2018, 10, 9023-9031.	4.0	50
122	Hierarchically Structured Colloids of Diblock Copolymers and Au Nanoparticles. Chemistry of Materials, 2009, 21, 3739-3741.	3.2	49
123	Synthesis of thermally stable Au-core/Pt-shell nanoparticles and their segregation behavior in diblock copolymer mixtures. Soft Matter, 2011, 7, 6255.	1.2	47
124	Aspect Ratio-Controlled Synthesis of Uniform Colloidal Block Copolymer Ellipsoids from Evaporative Emulsions. Chemistry of Materials, 2018, 30, 6277-6288.	3.2	47
125	Hydrogen Sensors Based on MoS ₂ Hollow Architectures Assembled by Pickering Emulsion. ACS Nano, 2020, 14, 9652-9661.	7.3	47
126	Efficient Temperature Sensing Platform Based on Fluorescent Block Copolymer-Functionalized Graphene Oxide. Nanoscale, 2013, 5, 5720.	2.8	46

#	Article	IF	CITATIONS
127	Side Chain Engineered Naphthalene Diimide-Based Terpolymer for Efficient and Mechanically Robust All-Polymer Solar Cells. Chemistry of Materials, 2021, 33, 1070-1081.	3.2	46
128	Synergistic Engineering of Side Chains and Backbone Regioregularity of Polymer Acceptors for Highâ€Performance Allâ€Polymer Solar Cells with 15.1% Efficiency. Advanced Energy Materials, 2022, 12, 2103239.	10.2	46
129	Highâ€Performance <i>n</i> â€Type Organic Electrochemical Transistors Enabled by Aqueous Solution Processing of Amphiphilicityâ€Driven Polymer Assembly. Advanced Functional Materials, 2022, 32, 2111950.	7.8	46
130	"Click―synthesis of thermally stable au nanoparticles with highly grafted polymer shell and control of their behavior in polymer matrix. Journal of Polymer Science Part A, 2011, 49, 3464-3474.	2.5	45
131	Intrinsicallyâ€Stretchable, Efficient Organic Solar Cells Achieved by Highâ€Molecularâ€Weight, Electroâ€Active Polymer Acceptor Additives. Advanced Energy Materials, 2022, 12, .	10.2	45
132	Controlling side-chain density of electron donating polymers for improving their packing structure and photovoltaic performance. Chemical Communications, 2011, 47, 3577.	2.2	44
133	Bicontinuous Block Copolymer Morphologies Produced by Interfacially Active, Thermally Stable Nanoparticles. Macromolecules, 2011, 44, 9366-9373.	2.2	44
134	Highly Luminescent Polymer Particles Driven by Thermally Reduced Graphene Quantum Dot Surfactants. ACS Macro Letters, 2014, 3, 985-990.	2.3	42
135	Aspect ratio effect of nanorod surfactants on the shape and internal morphology of block copolymer particles. Journal of Polymer Science Part A, 2015, 53, 188-192.	2.5	42
136	Aqueous-Soluble Naphthalene Diimide-Based Polymer Acceptors for Efficient and Air-Stable All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 45038-45047.	4.0	42
137	Poly(benzodithiophene) Homopolymer for High-Performance Polymer Solar Cells with Open-Circuit Voltage of Near 1 V: A Superior Candidate To Substitute for Poly(3-hexylthiophene) as Wide Bandgap Polymer. Chemistry of Materials, 2015, 27, 2653-2658.	3.2	41
138	Volatilizable and cost-effective quinone-based solid additives for improving photovoltaic performance and morphological stability in non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 13049-13058.	5.2	41
139	Importance of Highâ€Electron Mobility in Polymer Acceptors for Efficient Allâ€Polymer Solar Cells: Combined Engineering of Backbone Building Unit and Regioregularity. Advanced Functional Materials, 2022, 32, 2108508.	7.8	41
140	Donor–Acceptor Random versus Alternating Copolymers for Efficient Polymer Solar Cells: Importance of Optimal Composition in Random Copolymers. Macromolecules, 2016, 49, 2096-2105.	2.2	40
141	Symmetry Transitions of Polymer-Grafted Nanoparticles: Grafting Density Effect. Chemistry of Materials, 2019, 31, 5264-5273.	3.2	40
142	Regioregular- <i>block</i> -Regiorandom Poly(3-hexylthiophene) Copolymers for Mechanically Robust and High-Performance Thin-Film Transistors. Macromolecules, 2019, 52, 7721-7730.	2.2	40
143	Softness- and Size-Dependent Packing Symmetries of Polymer-Grafted Nanoparticles. ACS Nano, 2020, 14, 9644-9651.	7.3	40
144	High-Molecular-Weight Electroactive Polymer Additives for Simultaneous Enhancement of Photovoltaic Efficiency and Mechanical Robustness in High-Performance Polymer Solar Cells. Jacs Au, 2021, 1, 612-622.	3.6	40

#	Article	IF	CITATIONS
145	Asymmetric Electron-Donating 4-Alkyl-8-alkoxybenzo[1,2- <i>b</i> :4,5- <i>b</i> â€2]dithiophene Unit for Use in High-Efficiency Bulk Heterojunction Polymer Solar Cells. Macromolecules, 2015, 48, 3918-3927.	2.2	39
146	Naphthalene-, Anthracene-, and Pyrene-Substituted Fullerene Derivatives as Electron Acceptors in Polymer-based Solar Cells. ACS Applied Materials & amp; Interfaces, 2014, 6, 20776-20785.	4.0	38
147	High-performance, recyclable ultrafiltration membranes from P4VP-assisted dispersion of flame-resistive boron nitride nanotubes. Journal of Membrane Science, 2018, 551, 172-179.	4.1	38
148	Elucidating Roles of Polymer Donor Aggregation in All-Polymer and Non-Fullerene Small-Molecule–Polymer Solar Cells. Chemistry of Materials, 2020, 32, 3585-3596.	3.2	38
149	Donor–Acceptor Alternating Copolymer Compatibilizers for Thermally Stable, Mechanically Robust, and High-Performance Organic Solar Cells. ACS Nano, 2021, 15, 19970-19980.	7.3	38
150	Rationally Designed Donor–Acceptor Random Copolymers with Optimized Complementary Light Absorption for Highly Efficient Allâ€Polymer Solar Cells. Advanced Functional Materials, 2017, 27, 1703070.	7.8	37
151	Molecular Design of "Graft―Assembly for Ordered Microphase Separation of P3HT-Based Rod–Coil Copolymers. Macromolecules, 2013, 46, 8472-8478.	2.2	36
152	Fluorescent Block Copolymerâ€MoS ₂ Nanocomposites for Realâ€Time Photothermal Heating and Imaging. Advanced Functional Materials, 2017, 27, 1604403.	7.8	36
153	Mechanistic Study on the Shape Transition of Block Copolymer Particles Driven by Length-Controlled Nanorod Surfactants. Chemistry of Materials, 2018, 30, 8669-8678.	3.2	36
154	Surface Intaglio Nanostructures on Microspheres of Gold-Cored Block Copolymer Spheres. Chemistry of Materials, 2013, 25, 4416-4422.	3.2	35
155	Dual Imide-Functionalized Unit-Based Regioregular D–A1–D–A2 Polymers for Efficient Unipolar n-Channel Organic Transistors and All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 22583-22594.	4.0	35
156	Improved Internal Quantum Efficiency and Light-Extraction Efficiency of Organic Light-Emitting Diodes via Synergistic Doping with Au and Ag Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 27911-27919.	4.0	34
157	Regioregularity-Driven Morphological Transition of Poly(3-hexylthiophene)-Based Block Copolymers. Macromolecules, 2017, 50, 1902-1908.	2.2	34
158	Aqueous Soluble Fullerene Acceptors for Efficient Eco-Friendly Polymer Solar Cells Processed from Benign Ethanol/Water Mixtures. Chemistry of Materials, 2018, 30, 5663-5672.	3.2	34
159	Importance of Terminal Group Pairing of Polymer Donor and Smallâ€Molecule Acceptor in Optimizing Blend Morphology and Voltage Loss of Highâ€Performance Solar Cells. Advanced Functional Materials, 2021, 31, 2100870.	7.8	34
160	Green solvent-processed, high-performance organic solar cells achieved by outer side-chain selection of selenophene-incorporated Y-series acceptors. Journal of Materials Chemistry A, 2021, 9, 24622-24630.	5.2	34
161	Synthesis and Photovoltaic Performance of Low-Bandgap Polymers on the Basis of 9,9-Dialkyl-3,6-dialkyloxysilafluorene. Macromolecules, 2011, 44, 502-511.	2.2	32
162	â€~Click' Preparation of CuPt Nanorodâ€Anchored Graphene Oxide as a Catalyst in Water. Small, 2012, 8, 3161-3168.	5.2	32

#	Article	IF	CITATIONS
163	Polymer Donors with Temperature-Insensitive, Strong Aggregation Properties Enabling Additive-Free, Processing Temperature-Tolerant High-Performance All-Polymer Solar Cells. Macromolecules, 2021, 54, 53-63.	2.2	32
164	Nanoimprinting-Induced Nanomorphological Transition in Polymer Solar Cells: Enhanced Electrical and Optical Performance. ACS Nano, 2015, 9, 2773-2782.	7.3	31
165	Water Processable Polythiophene Nanowires by Photo-Cross-Linking and Click-Functionalization. Nano Letters, 2015, 15, 5689-5695.	4.5	31
166	Accomplishment of Multifunctional π-Conjugated Polymers by Regulating the Degree of Side-Chain Fluorination for Efficient Dopant-Free Ambient-Stable Perovskite Solar Cells and Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 36053-36060.	4.0	31
167	Lowâ€Temperature Processable Highâ€Performance D–Aâ€Type Random Copolymers for Nonfullerene Polymer Solar Cells and Application to Flexible Devices. Advanced Energy Materials, 2018, 8, 1801601.	10.2	31
168	Creating Opal-Templated Continuous Conducting Polymer Films with Ultralow Percolation Thresholds Using Thermally Stable Nanoparticles. ACS Nano, 2011, 5, 9017-9027.	7.3	30
169	Nanosphere Templated Continuous PEDOT:PSS Films with Low Percolation Threshold for Application in Efficient Polymer Solar Cells. ACS Nano, 2012, 6, 7902-7909.	7.3	30
170	Synthesis and side-chain engineering of phenylnaphthalenediimide (PNDI)-based n-type polymers for efficient all-polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 5449-5459.	5.2	29
171	Self-Organization of Polymer Additive, Poly(2-vinylpyridine) via One-Step Solution Processing to Enhance the Efficiency and Stability of Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1602812.	10.2	29
172	Impact of Chlorination Patterns of Naphthalenediimide-Based Polymers on Aggregated Structure, Crystallinity, and Device Performance of All-Polymer Solar Cells and Organic Transistors. ACS Applied Materials & Interfaces, 2020, 12, 56240-56250.	4.0	29
173	Chain-Length-Dependent Self-Assembly Behaviors of Discrete Conjugated Oligo(3-hexylthiophene). Chemistry of Materials, 2020, 32, 3597-3607.	3.2	29
174	Ultra‣ow Pt Loaded Porous Carbon Microparticles with Controlled Channel Structure for Highâ€Performance Fuel Cell Catalysts. Advanced Energy Materials, 2021, 11, 2102970.	10.2	29
175	Facile preparation of water soluble CuPt nanorods with controlled aspect ratio and study on their catalytic properties in water. Journal of Materials Chemistry, 2011, 21, 11956.	6.7	28
176	Highâ€Performance, Flexible NO ₂ Chemiresistors Achieved by Design of Imineâ€Incorporated nâ€Type Conjugated Polymers. Advanced Science, 2022, 9, e2200270.	5.6	28
177	Synthesis of biodegradable and flexible, polylactic acid based, thermoplastic polyurethane with high gas barrier properties. Polymer International, 2014, 63, 1620-1626.	1.6	27
178	Metal Halide Regulated Photophysical Tuning of Zeroâ€Dimensional Organic Metal Halide Hybrids: From Efficient Phosphorescence to Ultralong Afterglow. Angewandte Chemie, 2020, 132, 23267-23271.	1.6	27
179	Highly efficient and air stable thermoelectric devices of poly(3-hexylthiophene) by dual doping of Au metal precursors. Nano Energy, 2021, 82, 105681.	8.2	27
180	Effect of the Selective Halogenation of Small Molecule Acceptors on the Blend Morphology and Voltage Loss of Highâ€Performance Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	27

#	Article	IF	CITATIONS
181	Impact of Incorporating Nitrogen Atoms in Naphthalenediimide-Based Polymer Acceptors on the Charge Generation, Device Performance, and Stability of All-Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 35896-35903.	4.0	26
182	Entropy-Driven Assembly of Nanoparticles within Emulsion-Evaporative Block Copolymer Particles: Crusted, Seeded, and Alternate-Layered Onions. Chemistry of Materials, 2020, 32, 7036-7043.	3.2	26
183	Terpolymer approach for controlling the crystalline behavior of naphthalene diimide-based polymer acceptors and enhancing the performance of all-polymer solar cells. Polymer Journal, 2016, 48, 517-524.	1.3	25
184	Solution-Assembled Blends of Regioregularity-Controlled Polythiophenes for Coexistence of Mechanical Resilience and Electronic Performance. ACS Applied Materials & Interfaces, 2017, 9, 14120-14128.	4.0	25
185	Influence of backbone modification of difluoroquinoxaline-based copolymers on the interchain packing, blend morphology and photovoltaic properties of nonfullerene organic solar cells. Journal of Materials Chemistry C, 2019, 7, 1681-1689.	2.7	25
186	Polarity and Air-Stability Transitions in Field-Effect Transistors Based on Fullerenes with Different Solubilizing Groups. ACS Applied Materials & amp; Interfaces, 2013, 5, 4865-4871.	4.0	24
187	Shape control of nanostructured cone-shaped particles by tuning the blend morphology of A- <i>b</i> -B diblock copolymers and C-type copolymers within emulsion droplets. Polymer Chemistry, 2019, 10, 2415-2423.	1.9	24
188	Interfacial Instability-Driven Morphological Transition of Prolate Block Copolymer Particles: Striped Football, Larva to Sphere. Macromolecules, 2020, 53, 7198-7206.	2.2	24
189	Molecular Weight Dependent Morphological Transitions of Bottlebrush Block Copolymer Particles: Experiments and Simulations. ACS Nano, 2021, 15, 5513-5522.	7.3	24
190	Lens-Shaped Carbon Particles with Perpendicularly-Oriented Channels for High-Performance Proton Exchange Membrane Fuel Cells. ACS Nano, 2022, 16, 2988-2996.	7.3	24
191	Efficient, thermally stable poly(3-hexylthiophene)-based organic solar cells achieved by non-covalently fused-ring small molecule acceptors. Journal of Materials Chemistry A, 2022, 10, 640-650.	5.2	24
192	Graft Architectured Rod–Coil Copolymers Based on Alternating Conjugated Backbone: Morphological and Optical Properties. Macromolecules, 2015, 48, 5563-5569.	2.2	23
193	Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube–polymer composites. RSC Advances, 2017, 7, 30221-30228.	1.7	23
194	Efficient Approach for Improving the Performance of Nonhalogenated Green Solvent-Processed Polymer Solar Cells via Ternary-Blend Strategy. ACS Applied Materials & Interfaces, 2018, 10, 13748-13756.	4.0	23
195	Ester-functionalized, wide-bandgap derivatives of PM7 for simultaneous enhancement of photovoltaic performance and mechanical robustness of all-polymer solar cells. Journal of Materials Chemistry A, 2021, 9, 2775-2783.	5.2	23
196	Regioregularity-control of conjugated polymers: from synthesis and properties, to photovoltaic device applications. Journal of Materials Chemistry A, 2022, 10, 2672-2696.	5.2	23
197	Highly Flexible and Durable Thermoelectric Power Generator Using CNT/PDMS Foam by Rapid Solvent Evaporation. Small, 2022, 18, e2106108.	5.2	23
198	Free-standing film electronics using photo-crosslinking layer-by-layer assembly. Journal of Materials Chemistry, 2009, 19, 4488.	6.7	22

#	Article	IF	CITATIONS
199	Efficient light trapping in inverted polymer solar cells by a randomly nanostructured electrode using monodispersed polymer nanoparticles. Nanoscale, 2013, 5, 1858.	2.8	22
200	Charge Generation Dynamics in Efficient All-Polymer Solar Cells: Influence of Polymer Packing and Morphology. ACS Applied Materials & amp; Interfaces, 2015, 7, 27586-27591.	4.0	22
201	Tailoring block copolymer and polymer blend morphology using nanoparticle surfactants. Journal of Polymer Science Part A, 2016, 54, 228-237.	2.5	22
202	A High Dielectric Nâ€Type Small Molecular Acceptor Containing Oligoethyleneglycol Sideâ€Chains for Organic Solar Cells. Chinese Journal of Chemistry, 2018, 36, 199-205.	2.6	22
203	Regioisomeric wide-band-gap polymers with different fluorine topologies for non-fullerene organic solar cells. Polymer Chemistry, 2019, 10, 395-402.	1.9	22
204	Developement of highly efficient large area organic photovoltaic module: Effects of nonfullerene acceptor. Nano Energy, 2020, 77, 105147.	8.2	22
205	Influence of Drying Conditions on Device Performances of Antisolvent-Assisted Roll-to-Roll Slot Die-Coated Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7611-7621.	2.5	22
206	Sequentially Fluorinated Polythiophene Donors for Highâ€Performance Organic Solar Cells with 16.4% Efficiency. Advanced Energy Materials, 2022, 12, .	10.2	22
207	Effect of Polymer Ligand Conformation on the Self-Assembly of Block Copolymers and Polymer-Grafted Nanoparticles within an Evaporative Emulsion. Macromolecules, 2021, 54, 3084-3092.	2.2	21
208	Modulating Regioregularity of Poly(3-hexylthiophene)-based Amphiphilic Block Copolymers To Control Solution Assembly from Nanowires to Micelles. Chemistry of Materials, 2018, 30, 7912-7921.	3.2	20
209	Cyanoâ€Functionalized Quinoxalineâ€Based Polymer Acceptors for Allâ€Polymer Solar Cells and Organic Transistors. ChemSusChem, 2021, 14, 3520-3527.	3.6	20
210	Electron Transport Layers Based on Oligo(ethylene glycol)-Incorporated Polymers Enabling Reproducible Fabrication of High-Performance Organic Solar Cells. Macromolecules, 2021, 54, 7102-7112.	2.2	20
211	Nanoporous Bicontinuous Structures via Addition of Thermally-Stable Amphiphilic Nanoparticles within Block Copolymer Templates. ACS Applied Materials & Interfaces, 2013, 5, 5659-5666.	4.0	19
212	Simultaneously Enhancing Light Extraction and Device Stability of Organic Lightâ€Emitting Diodes using a Corrugated Polymer Nanosphere Templated PEDOT:PSS Layer. Advanced Energy Materials, 2014, 4, 1301345.	10.2	19
213	Aspect-Ratio Effect of Nanorod Compatibilizers in Conducting Polymer Blends. ACS Macro Letters, 2014, 3, 398-404.	2.3	19
214	Selective engineering of oxygen-containing functional groups using the alkyl ligand oleylamine for revealing the luminescence mechanism of graphene oxide quantum dots. Nanoscale, 2017, 9, 18635-18643.	2.8	19
215	Disintegrable nâ€Type Electroactive Terpolymers for Highâ€Performance, Transient Organic Electronics. Advanced Functional Materials, 2022, 32, 2106977.	7.8	19
216	Polymer/small-molecule parallel tandem organic solar cells based on MoOx–Ag–MoOx intermediate electrodes. Solar Energy Materials and Solar Cells, 2015, 137, 34-43.	3.0	18

#	Article	IF	CITATIONS
217	Semiconducting Copolymers Based on <i>meso</i> â€Substituted BODIPY for Inverted Organic Solar Cells and Fieldâ€Effect Transistors. Advanced Electronic Materials, 2018, 4, 1700354.	2.6	18
218	Terminal alkyl substitution in an A–D–A-type nonfullerene acceptor: simultaneous improvements in the open-circuit voltage and short-circuit current for efficient indoor power generation. Journal of Materials Chemistry A, 2020, 8, 23894-23905.	5.2	18
219	Poly(vinylpyridine)-containing block copolymers for smart, multicompartment particles. Polymer Chemistry, 2022, 13, 2570-2588.	1.9	18
220	Impact of Terminal End-Group of Acceptor–Donor–Acceptor-type Small Molecules on Molecular Packing and Photovoltaic Properties. ACS Applied Materials & Interfaces, 2018, 10, 39952-39961.	4.0	17
221	Domain Structures of Poly(3-dodecylthiophene)-Based Block Copolymers Depend on Regioregularity. Macromolecules, 2018, 51, 4077-4084.	2.2	17
222	Synergistic Effects of Terpolymer Regioregularity on the Performance of All-Polymer Solar Cells. Macromolecules, 2019, 52, 738-746.	2.2	17
223	Carrier Lifetime Extension via the Incorporation of Robust Hole/Electron Blocking Layers in Bulk Heterojunction Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 333-339.	4.0	16
224	Molecular structure-device performance relationship in polymer solar cells based on indene-C60 bis-adduct derivatives. Korean Journal of Chemical Engineering, 2015, 32, 261-267.	1.2	16
225	Enhancing Mechanical Properties of Highly Efficient Polymer Solar Cells Using Size-Tuned Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 2668-2676.	4.0	16
226	Bench-Scale Synthesis and Characterization of Biodegradable Aliphatic–Aromatic Random Copolymers with 1,4-Cyclohexanedimethanol Units Toward Sustainable Packaging Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 4734-4743.	3.2	16
227	Triad-type, multi-functional compatibilizers for enhancing efficiency, stability and mechanical robustness of polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 13522-13531.	5.2	16
228	Fluorescence Switchable Block Copolymer Particles with Doubly Alternate‣ayered Nanoparticle Arrays. Small, 2021, 17, e2101222.	5.2	16
229	Benzocyclobutene-fullerene bisadducts as novel electron acceptors for enhancing open-circuit voltage in polymer solar cells. Solar Energy Materials and Solar Cells, 2015, 141, 87-92.	3.0	14
230	Crystallization Modes of Poly(3-dodecylthiophene)-Based Block Copolymers Depend on Regioregularity and Morphology. Macromolecules, 2018, 51, 9276-9283.	2.2	14
231	Confined, Templated, and Break-Through Crystallization Modes in Poly(3-dodecylthiophene)- <i>block</i> -poly(ethyl methacrylate) Block Copolymers. Macromolecules, 2019, 52, 4475-4482.	2.2	14
232	Light-Active, Reversibly Shape-Shifting Block Copolymer Particles Using Photo-switchable Au Nanoparticle Surfactants. Chemistry of Materials, 2021, 33, 9769-9779.	3.2	14
233	Analysis of Reaction Kinetics of End-Functionalized Polymers at a PS/P2VP Interface by DSIMS. Macromolecules, 2007, 40, 3686-3694.	2.2	13
234	Soft Elastomeric Nanopillar Stamps for Enhancing Absorption in Organic Thinâ€Film Solar Cells. Small, 2013, 9, 369-374.	5.2	13

#	Article	IF	CITATIONS
235	Impact of highly crystalline, isoindigo-based small-molecular additives for enhancing the performance of all-polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 21291-21299.	5.2	13
236	Synthesis and crystallization behavior of regioregular-block-regiorandom poly(3-hexylthiophene) copolymers. Polymer Chemistry, 2019, 10, 3030-3039.	1.9	13
237	Fluorescent Polymer-MoS ₂ -Embedded Microgels for Photothermal Heating and Colorimetric Monitoring. ACS Applied Materials & Interfaces, 2020, 12, 35415-35423.	4.0	13
238	Solid-State Organic Electrolyte-Gated Transistors Based on Doping-Controlled Polymer Composites with a Confined Two-Dimensional Channel in Dry Conditions. ACS Applied Materials & Interfaces, 2021, 13, 1065-1075.	4.0	13
239	Layer-by-Layer Assembled Multilayer TiO _{<i>x</i>} for Efficient Electron Acceptor in Polymer Hybrid Solar Cells. Langmuir, 2010, 26, 17589-17595.	1.6	12
240	Architectural Effects on Solution Self-Assembly of Poly(3-hexylthiophene)-Based Graft Copolymers. ACS Applied Materials & Interfaces, 2017, 9, 2933-2941.	4.0	12
241	Importance of device structure and interlayer design in storage stability of naphthalene diimide-based all-polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 3735-3745.	5.2	12
242	Revisiting carbazole-based polymer donors for efficient and thermally stable polymer solar cells: structural utility of coplanar π-bridged spacers. Journal of Materials Chemistry A, 2022, 10, 9408-9418.	5.2	12
243	Inorganic nanoparticle multilayers using photo-crosslinking layer-by-layer assembly and their applications in nonvolatile memory devices. Nanoscale, 2013, 5, 12356.	2.8	11
244	C ₇₀ -based aqueous-soluble fullerene for the water composition-tolerant performance of eco-friendly polymer solar cells. Journal of Materials Chemistry C, 2020, 8, 15224-15233.	2.7	11
245	Highly Efficient and Stable Perovskite Solar Cells Enabled by Low ost Industrial Organic Pigment Coating. Angewandte Chemie, 2021, 133, 2515-2522.	1.6	11
246	Effects of the Selective Alkoxy Side Chain Position in Quinoxaline-Based Polymer Acceptors on the Performance of All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 47817-47825.	4.0	11
247	Nanoparticles as structureâ€directing agents for controlling the orientation of block copolymer microdomain in thin films. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 118-127.	2.4	10
248	Nanostructured Particles: Stimuliâ€Responsive, Shapeâ€Transforming Nanostructured Particles (Adv.) Tj ETQq0 () 0 _{1 [2]} BT /(Dverlock 10 T
249	Polymersome formation by solvent annealing-induced structural reengineering under 3D soft confinement. Nano Research, 2021, 14, 4644-4649.	5.8	10
250	Regioregularity-Dependent Crystalline Structures and Thermal Transitions in Poly(3-dodecylthiophene)s. Chemistry of Materials, 2021, 33, 3312-3320.	3.2	10
251	Effect of Polymeric <i>In Situ</i> Stabilizers on Dispersion Homogeneity of Nanofillers and Thermal Conductivity Enhancement of Composites. Langmuir, 2020, 36, 5563-5570.	1.6	9
252	Aniline-based hole transporting materials for high-performance organic solar cells with enhanced	5.2	9

ambient stability. Journal of Materials Chemistry A, 2021, 9, 15787-15797. 252

#	Article	IF	CITATIONS
253	2D Outer Side Chainâ€Incorporated Y Acceptors for Highly Efficient Organic Solar Cells with Nonhalogenated Solvent and Annealingâ€Free Process. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	9
254	Spring-loaded inverted pendulum modeling improves neural network estimation of ground reaction forces. Journal of Biomechanics, 2020, 113, 110069.	0.9	8
255	High urrentâ€Density Organic Electrochemical Diodes Enabled by Asymmetric Active Layer Design. Advanced Materials, 2022, 34, e2107355.	11.1	8
256	Chain Architecture Effects on the Diffusion of Cylinder-Forming Block Copolymers. Macromolecules, 2007, 40, 2443-2452.	2.2	7
257	Enhanced thermal stability of organic solar cells on nano structured electrode by simple acid etching. Organic Electronics, 2014, 15, 680-684.	1.4	7
258	Fullerene–non-fullerene hybrid acceptors for enhanced light absorption and electrical properties in organic solar cells. Materials Today Energy, 2021, 20, 100651.	2.5	7
259	Ultraâ€High Alignment of Polymer Semiconductor Blends Enabling Photodetectors with Exceptional Polarization Sensitivity. Advanced Functional Materials, 2022, 32, 2105820.	7.8	7
260	Rapid solvo-microwave annealing for optimizing ordered nanostructures and crystallization of regioregular polythiophene-based block copolymers. Polymer Chemistry, 2019, 10, 4962-4972.	1.9	6
261	Eco-compatible and highly efficient organic solar cells with an aggregation-controlled terpolymer strategy. Journal of Materials Chemistry A, 2021, 9, 27551-27559.	5.2	6
262	Revisiting the Classical Wideâ€Bandgap HOMO and Random Copolymers for Indoor Artificial Light Photovoltaics. Macromolecular Rapid Communications, 2022, 43, e2200279.	2.0	6
263	High performance epoxy nanocomposites with enhanced thermal and mechanical properties by incorporating amine-terminated oligoimide-grafted graphene oxide. High Performance Polymers, 2020, 32, 569-587.	0.8	5
264	Simultaneous Measurement of Glass-Transition Temperature and Crystallinity of As-Prepared Polymeric Films from Restitution. Macromolecules, 2021, 54, 9532-9541.	2.2	5
265	Structured nanoporous surfaces from hybrid block copolymer micelle films with metal ions. Nanotechnology, 2015, 26, 095302.	1.3	4
266	Poly(3-hexylthiophene-2.5-diyl): Evidence of different polymer chain conformations in the solid state from a combined study of regioregularity control and Raman spectroscopy. Journal of Molecular Structure, 2020, 1221, 128882.	1.8	4
267	Meso-π-Extended/Deficient BODIPYs and Low-Band-Gap Donor–Acceptor Copolymers for Organic Optoelectronics. ACS Applied Polymer Materials, 2022, 4, 1991-2005.	2.0	4
268	Synthesis and Self-Assembly of Poly(vinylpyridine)-Containing Brush Block Copolymers: Combined Synthesis of Grafting-Through and Grafting-to Approaches. Macromolecules, 2022, 55, 1590-1599.	2.2	4
269	Aqueous-processable, naphthalene diimide-based polymers for eco-friendly fabrication of high-performance, n-type organic electrolyte-gated transistors. Science China Chemistry, 2022, 65, 973-978.	4.2	4
270	Thermomechanical Behavior of Poly(3-hexylthiophene) Thin Films on the Water Surface. ACS Omega, 2022, 7, 19706-19713.	1.6	4

#	Article	IF	CITATIONS
271	Polymer Solar Cells: Low-Temperature Processable High-Performance D-A-Type Random Copolymers for Nonfullerene Polymer Solar Cells and Application to Flexible Devices (Adv. Energy Mater. 30/2018). Advanced Energy Materials, 2018, 8, 1870132.	10.2	2
272	Stabilization of complex morphologies in highly disperse AB diblock copolymers. Polymer, 2020, 198, 122519.	1.8	2
273	Triallyl <scp>isocyanurateâ€assisted</scp> grafting of maleic anhydride to poly(lactic acid): Efficient compatibilizers for poly(lactic acid)/talc composites with enhanced mechanical properties. Journal of Applied Polymer Science, 2022, 139, 51488.	1.3	2
274	Bio-inspired spectropolarimetric sensor based on tandem organic photodetectors and multi-twist liquid crystals. Optics Express, 2021, 29, 43953.	1.7	2
275	A 3D Hierarchical Host with Enhanced Sodiophilicity Enabling Anodeâ€Free Sodiumâ€Metal Batteries (Adv.) Tj ETQ	2q1.1 0.78	84314 rgBT
276	Organic Electronics: Efficient and Air-Stable Aqueous-Processed Organic Solar Cells and Transistors: Impact of Water Addition on Processability and Thin-Film Morphologies of Electroactive Materials (Adv. Energy Mater. 34/2018). Advanced Energy Materials, 2018, 8, 1870149.	10.2	1
277	Organic Electronics: Semiconducting Copolymers Based on meso -Substituted BODIPY for Inverted Organic Solar Cells and Field-Effect Transistors (Adv. Electron. Mater. 10/2018). Advanced Electronic Materials, 2018, 4, 1870049.	2.6	1
278	Regioregularity controlled phase behavior for Poly(3-hexylthiophene): A combined study of simple coarse-grained simulation and experiment. Polymer, 2019, 178, 121569.	1.8	1
279	PROPERTIES OF COPPER LAYER ON Si(100) FROM Cu(dmamb)2. Surface Review and Letters, 2010, 17, 307-310.	0.5	0
280	Multicolor Emission: Multicolor Emission of Hybrid Block Copolymer–Quantum Dot Microspheres by Controlled Spatial Isolation of Quantum Dots (Small 16/2013). Small, 2013, 9, 2654-2654.	5.2	0
281	Organic Electronics: Facile Photo rosslinking of Azide ontaining Holeâ€Transporting Polymers for Highly Efficient, Solutionâ€Processed, Multilayer Organic Light Emitting Devices (Adv. Funct. Mater.) Tj ETQq1 1 C	. 7 &4314	rg&T /Overic
282	Lightâ€Emitting Diodes: Simultaneously Enhancing Light Extraction and Device Stability of Organic Lightâ€Emitting Diodes using a Corrugated Polymer Nanosphere Templated PEDOT:PSS Layer (Adv. Energy) Tj ETC	ეიე. დ 0 г <u></u>	gBð /Overloc
283	Sensors: Highly Sensitive and Selective Liquidâ€Phase Sensors Based on a Solventâ€Resistant Organicâ€Transistor Platform (Adv. Mater. 9/2015). Advanced Materials, 2015, 27, 1470-1470.	11.1	0
284	Photothermal Imaging: Fluorescent Block Copolymerâ€MoS ₂ Nanocomposites for Realâ€Time Photothermal Heating and Imaging (Adv. Funct. Mater. 5/2017). Advanced Functional Materials, 2017, 27,	7.8	0
285	Solar Cells: Rationally Designed Donor–Acceptor Random Copolymers with Optimized Complementary Light Absorption for Highly Efficient Allâ€Polymer Solar Cells (Adv. Funct. Mater. 38/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
286	Effect of the acceptor types on the fracture behavior of polymer solar cells. , 2018, , .		0
287	Effect of Conductive Filler Shape on Fine Electrode Pattern of Photosensitive Silver Pastes. Porrime, 2015, 39, 662.	0.0	0
288	Morphological Stability in Bulk Heterojunction Polymer Solar Cells. Materials and Energy, 2018, , 165-208.	2.5	0