
Genyi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1333250/publications.pdf Version: 2024-02-01

CENVI ZHANC

#	Article	IF	CITATIONS
1	Slow Digestion Property of Native Cereal Starches. Biomacromolecules, 2006, 7, 3252-3258.	2.6	368
2	Slowly Digestible Starch: Concept, Mechanism, and Proposed Extended Glycemic Index. Critical Reviews in Food Science and Nutrition, 2009, 49, 852-867.	5.4	341
3	Structural Basis for the Slow Digestion Property of Native Cereal Starches. Biomacromolecules, 2006, 7, 3259-3266.	2.6	201
4	Interaction between Amylose and Tea Polyphenols Modulates the Postprandial Glycemic Response to High-Amylose Maize Starch. Journal of Agricultural and Food Chemistry, 2013, 61, 8608-8615.	2.4	194
5	Nutritional Property of Endosperm Starches from Maize Mutants: A Parabolic Relationship between Slowly Digestible Starch and Amylopectin Fine Structure. Journal of Agricultural and Food Chemistry, 2008, 56, 4686-4694.	2.4	180
6	Slowly Digestible State of Starch: Mechanism of Slow Digestion Property of Gelatinized Maize Starch. Journal of Agricultural and Food Chemistry, 2008, 56, 4695-4702.	2.4	122
7	A Three Component Interaction among Starch, Protein, and Free Fatty Acids Revealed by Pasting Profiles. Journal of Agricultural and Food Chemistry, 2003, 51, 2797-2800.	2.4	116
8	Low α-Amylase Starch Digestibility of Cooked Sorghum Flours and the Effect of Protein. Cereal Chemistry, 1998, 75, 710-713.	1.1	103
9	Delivery of Bioactive Conjugated Linoleic Acid with Self-Assembled Amyloseâ^'CLA Complex. Journal of Agricultural and Food Chemistry, 2009, 57, 7125-7130.	2.4	85
10	Effect of Green Tea Catechins on the Postprandial Glycemic Response to Starches Differing in Amylose Content. Journal of Agricultural and Food Chemistry, 2011, 59, 4582-4588.	2.4	83
11	Detection of a Novel Three Component Complex Consisting of Starch, Protein, and Free Fatty Acids. Journal of Agricultural and Food Chemistry, 2003, 51, 2801-2805.	2.4	68
12	Sorghum (Sorghum bicolor L. Moench) Flour Pasting Properties Influenced by Free Fatty Acids and Protein. Cereal Chemistry, 2005, 82, 534-540.	1.1	67
13	Free Fatty Acids Electronically Bridge the Self-Assembly of a Three-Component Nanocomplex Consisting of Amylose, Protein, and Free Fatty Acids. Journal of Agricultural and Food Chemistry, 2010, 58, 9164-9170.	2.4	59
14	Fluorescent magnetic bead-based mast cell biosensor for electrochemical detection of allergens in foodstuffs. Biosensors and Bioelectronics, 2015, 70, 482-490.	5.3	57
15	Impact of native form oat β-glucan on starch digestion and postprandial glycemia. Journal of Cereal Science, 2017, 73, 84-90.	1.8	53
16	Synbiotic encapsulation of probiotic Latobacillus plantarum by alginate -arabinoxylan composite microspheres. LWT - Food Science and Technology, 2018, 93, 135-141.	2.5	50
17	Proapoptotic activity of aflatoxin B 1 and sterigmatocystin in HepG2 cells. Toxicology Reports, 2014, 1, 1076-1086.	1.6	48
18	Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability. Food and Function, 2015, 6, 1072-1089.	2.1	42

Genyi Zhang

#	Article	IF	CITATIONS
19	REVIEW: Cereal Carbohydrates and Colon Health. Cereal Chemistry, 2010, 87, 331-341.	1.1	40
20	Starch-Entrapped Biopolymer Microspheres as a Novel Approach to Vary Blood Glucose Profiles. Journal of the American College of Nutrition, 2009, 28, 583-590.	1.1	38
21	Dietary Slowly Digestible Starch Triggers the Gut–Brain Axis in Obese Rats with Accompanied Reduced Food Intake. Molecular Nutrition and Food Research, 2018, 62, 1700117.	1.5	37
22	Slow Digestion Property of Octenyl Succinic Anhydride Modified Waxy Maize Starch in the Presence of Tea Polyphenols. Journal of Agricultural and Food Chemistry, 2015, 63, 2820-2829.	2.4	34
23	Different sucrose-isomaltase response of Caco-2 cells to glucose and maltose suggests dietary maltose sensing. Journal of Clinical Biochemistry and Nutrition, 2014, 54, 55-60.	0.6	31
24	Self-Assembled Nanoparticle of Common Food Constituents That Carries a Sparingly Soluble Small Molecule. Journal of Agricultural and Food Chemistry, 2015, 63, 4312-4319.	2.4	30
25	The preparation of modified nano-starch and its application in food industry. Food Research International, 2021, 140, 110009.	2.9	30
26	Glucose Measurement in the Presence of Tea Polyphenols. Food Analytical Methods, 2012, 5, 1027-1032.	1.3	23
27	The nutritional property of endosperm starch and its contribution to the health benefits of whole grain foods. Critical Reviews in Food Science and Nutrition, 2017, 57, 3807-3817.	5.4	23
28	A proteomic study on the protective effect of kaempferol pretreatment against deoxynivalenol-induced intestinal barrier dysfunction in a Caco-2 cell model. Food and Function, 2020, 11, 7266-7279.	2.1	22
29	The loosening effect of tea polyphenol on the structure of octenyl succinic anhydride modified waxy maize starch. Food Hydrocolloids, 2020, 99, 105367.	5.6	20
30	Interaction of aflatoxin B 1 and fumonisin B 1 in HepG2 cell apoptosis. Food Bioscience, 2017, 20, 131-140.	2.0	18
31	Nutritional property of starch in a whole-grain-like structural form. Journal of Cereal Science, 2018, 79, 113-117.	1.8	18
32	The impact of Tartary buckwheat extract on the nutritional property of starch in a whole grain context. Journal of Cereal Science, 2019, 89, 102798.	1.8	17
33	The anti-obesity effect of starch in a whole grain-like structural form. Food and Function, 2018, 9, 3755-3763.	2.1	14
34	Slow digestionâ€oriented dietary strategy to sustain the secretion of GLPâ€1 for improved glucose homeostasis. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5173-5196.	5.9	14
35	Plant-sourced intrinsic dietary fiber: Physical structure and health function. Trends in Food Science and Technology, 2021, 118, 341-355.	7.8	13
36	Starch and β-glucan in a whole-grain-like structural form improve hepatic insulin sensitivity in diet-induced obese mice. Food and Function, 2019, 10, 5091-5101.	2.1	12

Genyi Zhang

#	Article	IF	CITATIONS
37	Carbohydrates designed with different digestion rates modulate gastric emptying response in rats. International Journal of Food Sciences and Nutrition, 2020, 71, 839-844.	1.3	12
38	Impact of deoxynivalenol and kaempferol on expression of tight junction proteins at different stages of Caco-2 cell proliferation and differentiation. RSC Advances, 2019, 9, 34607-34616.	1.7	11
39	Cross-linked arabinoxylan in a Ca2+-alginate matrix reversed the body weight gain of HFD-fed C57BL/6J mice through modulation of the gut microbiome. International Journal of Biological Macromolecules, 2021, 176, 404-412.	3.6	10
40	The impact of the physical form of torularhodin on its metabolic fate in the gastrointestinal tract. Food and Function, 2021, 12, 9955-9964.	2.1	8
41	SDS-Sulfite Increases Enzymatic Hydrolysis of Native Sorghum Starches. Starch/Staerke, 1999, 51, 21-25.	1.1	7
42	Oat bran β-glucan improves glucose homeostasis in mice fed on a high-fat diet. RSC Advances, 2017, 7, 54717-54725.	1.7	7
43	Tea polyphenols: Enzyme inhibition effect and starch digestibility. Starch/Staerke, 2017, 69, 1600195.	1.1	6
44	Biopolymerâ€entrapped starch microspheres as novel slowly digestible carbohydrate ingredients with moderated and extended glycemic response. FASEB Journal, 2007, 21, A344.	0.2	2
45	Influence of Hofmeister anions on structural and thermal properties of a starch-protein-lipid nanoparticle. International Journal of Biological Macromolecules, 2022, 210, 768-775.	3.6	0