
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1333231/publications.pdf Version: 2024-02-01

VIEENC FU

#	Article	IF	CITATIONS
1	Graphene related materials for thermal management. 2D Materials, 2020, 7, 012001.	2.0	161
2	Synthesis of graphene quantum dots and their applications in drug delivery. Journal of Nanobiotechnology, 2020, 18, 142.	4.2	142
3	Synthesis Methods of Two-Dimensional MoS2: A Brief Review. Crystals, 2017, 7, 198.	1.0	138
4	Functionalization mediates heat transport in graphene nanoflakes. Nature Communications, 2016, 7, 11281.	5.8	123
5	Improved Heat Spreading Performance of Functionalized Graphene in Microelectronic Device Application. Advanced Functional Materials, 2015, 25, 4430-4435.	7.8	117
6	Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots. Carbon, 2013, 61, 342-348.	5.4	96
7	Through-Silicon Vias Filled With Densified and Transferred Carbon Nanotube Forests. IEEE Electron Device Letters, 2012, 33, 420-422.	2.2	67
8	Synthesis and applications of two-dimensional hexagonal boron nitride in electronics manufacturing. Electronic Materials Letters, 2016, 12, 1-16.	1.0	67
9	A complete carbon-nanotube-based on-chip cooling solution with very high heat dissipation capacity. Nanotechnology, 2012, 23, 045304.	1.3	64
10	Ultrafast Transfer of Metalâ€Enhanced Carbon Nanotubes at Low Temperature for Largeâ€Scale Electronics Assembly. Advanced Materials, 2010, 22, 5039-5042.	11.1	48
11	Vertically Stacked Carbon Nanotube-Based Interconnects for Through Silicon Via Application. IEEE Electron Device Letters, 2015, 36, 499-501.	2.2	44
12	Graphene oxide based coatings on nitinol for biomedical implant applications: effectively promote mammalian cell growth but kill bacteria. RSC Advances, 2016, 6, 38124-38134.	1.7	44
13	Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects. Nanotechnology, 2016, 27, 335705.	1.3	43
14	Templated Growth of Covalently Bonded Threeâ€Đimensional Carbon Nanotube Networks Originated from Graphene. Advanced Materials, 2012, 24, 1576-1581.	11.1	37
15	Two-dimensional hexagonal boron nitride as lateral heat spreader in electrically insulating packaging. Journal Physics D: Applied Physics, 2016, 49, 265501.	1.3	33
16	A portable micro glucose sensor based on copper-based nanocomposite structure. New Journal of Chemistry, 2019, 43, 7806-7813.	1.4	32
17	Compact and low loss electrochemical capacitors using a graphite / carbon nanotube hybrid material for miniaturized systems. Journal of Power Sources, 2019, 412, 374-383.	4.0	32
18	Characterization and simulation of liquid phase exfoliated graphene-based films for heat spreading applications. Carbon, 2016, 106, 195-201.	5.4	28

#	Article	IF	CITATIONS
19	Carbon nanotubes for electronics manufacturing and packaging: from growth to integration. Advances in Manufacturing, 2013, 1, 13-27.	3.2	22
20	Tape-Assisted Transfer of Carbon Nanotube Bundles for Through-Silicon-Via Applications. Journal of Electronic Materials, 2015, 44, 2898-2907.	1.0	21
21	Egg albumen templated graphene foams for high-performance supercapacitor electrodes and electrochemical sensors. Journal of Materials Chemistry A, 2018, 6, 18267-18275.	5.2	21
22	Scalable three-dimensional Ni3P-based composite networks for flexible asymmertric supercapacitors. Chemical Engineering Journal, 2020, 380, 122621.	6.6	21
23	Flexible Multifunctionalized Carbon Nanotubesâ€Based Hybrid Nanowires. Advanced Functional Materials, 2015, 25, 4135-4143.	7.8	20
24	Improving Thermal Transport at Carbon Hybrid Interfaces by Covalent Bonds. Advanced Materials Interfaces, 2018, 5, 1800318.	1.9	20
25	Selective growth of double-walled carbon nanotubes on gold films. Materials Letters, 2012, 72, 78-80.	1.3	19
26	High porosity and light weight graphene foam heat sink and phase change material container for thermal management. Nanotechnology, 2020, 31, 424003.	1.3	17
27	Nanostructured polymer-metal composite for thermal interface material applications. , 2008, , .		15
28	Embedded Fin‣ike Metal/CNT Hybrid Structures for Flexible and Transparent Conductors. Small, 2016, 12, 1521-1526.	5.2	15
29	Mechanical and thermal characterization of a novel nanocomposite thermal interface material for electronic packaging. Microelectronics Reliability, 2016, 56, 129-135.	0.9	15
30	Effects of high temperature treatment of carbon nanotube arrays on graphite: increased crystallinity, anchoring and inter-tube bonding. Nanotechnology, 2020, 31, 455708.	1.3	15
31	Degradation of Carbon Nanotube Array Thermal Interface Materials through Thermal Aging: Effects of Bonding, Array Height, and Catalyst Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 30992-31000.	4.0	15
32	Understanding noninvasive charge transfer doping of graphene: a comparative study. Journal of Materials Science: Materials in Electronics, 2018, 29, 5239-5252.	1.1	14
33	Controllable and fast synthesis of bilayer graphene by chemical vapor deposition on copper foil using a cold wall reactor. Chemical Engineering Journal, 2016, 304, 106-114.	6.6	13
34	Chemical vapor deposition grown graphene on Cu-Pt alloys. Materials Letters, 2017, 193, 255-258.	1.3	13
35	A lightweight and high thermal performance graphene heat pipe. Nano Select, 2021, 2, 364-372.	1.9	12
36	Reliability Investigation of a Carbon Nanotube Array Thermal Interface Material. Energies, 2019, 12, 2080.	1.6	11

#	Article	IF	CITATIONS
37	Application of through silicon via technology forin situtemperature monitoring on thermal interfaces. Journal of Micromechanics and Microengineering, 2010, 20, 025027.	1.5	10
38	Thick film patterning by lift-off process using double-coated single photoresists. Materials Letters, 2012, 76, 117-119.	1.3	9
39	Characterization for graphene as heat spreader using thermal imaging method. , 2013, , .		9
40	Graphene based heat spreader for high power chip cooling using flip-chip technology. , 2013, , .		9
41	Thermal characterization of power devices using graphene-based film. , 2014, , .		8
42	Graphene heat spreader for thermal management of hot spots. , 2013, , .		7
43	Combination of positive charges and honeycomb pores to promote MC3T3-E1 cell behaviour. RSC Advances, 2015, 5, 42276-42286.	1.7	7
44	Cooling hot spots by hexagonal boron nitride heat spreaders. , 2015, , .		7
45	Thermal Characterization of Low-Dimensional Materials by Resistance Thermometers. Materials, 2019, 12, 1740.	1.3	7
46	Infrared emissivity measurement for vertically aligned multiwall carbon nanotubes (CNTs) based heat spreader applied in high power electronics packaging. , 2016, , .		6
47	A flexible and stackable 3D interconnect system using growth-engineered carbon nanotube scaffolds. Flexible and Printed Electronics, 2017, 2, 025003.	1.5	6
48	Covalent Anchoring of Carbon Nanotube-Based Thermal Interface Materials Using Epoxy-Silane Monolayers. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 427-433.	1.4	6
49	Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes. Electronic Materials Letters, 2016, 12, 329-337.	1.0	5
50	Multiple growth of graphene from a pre-dissolved carbon source. Nanotechnology, 2020, 31, 345601.	1.3	5
51	Recent progress of Carbon Nanotubes as cooling fins in electronic packaging. , 2008, , .		4
52	Use of Carbon nanotubes in potential electronics packaging applications. , 2010, , .		4
53	The effects of graphene-based films as heat spreaders for thermal management in electronic packaging. , 2016, , .		4
54	An overview of carbon nanotubes based interconnects for microelectronic packaging. , 2017, , .		4

#	Article	IF	CITATIONS
55	Detecting single molecules inside a carbon nanotube to control molecular sequences using inertia trapping phenomenon. Applied Physics Letters, 2012, 101, 133105.	1.5	3
56	Use of graphene-based films for hot spot cooling. , 2014, , .		3
57	Reliability of graphene-based films used for high power electronics packaging. , 2015, , .		3
58	2D heat dissipation materials for microelectronics cooling applications. , 2016, , .		3
59	Current status and progress of organic functionalization of CNT based thermal interface materials for electronics cooling applications. , 2017, , .		3
60	Preparation of polymer-metal nanocomposite films and performance evaluation as thermal interface material. , 2008, , .		2
61	A study of the heat transfer characteristics of the micro-channel heat sink. , 2009, , .		2
62	Reliability of carbon nanotube bumps for chip on glass application. , 2014, , .		2
63	Chemically vapor deposited carbon nanotubes for vertical electronics interconnect in packaging applications. , 2014, , .		2
64	Double-Densified Vertically Aligned Carbon Nanotube Bundles for Application in 3D Integration High Aspect Ratio TSV Interconnects. , 2016, , .		2
65	Thermal Reliability Study of Polymer Bonded Carbon Nanotube Array Thermal Interface Materials. , 2018, , .		2
66	Experimental Microwave Complex Conductivity Extraction of Vertically Aligned MWCNT Bundles for Microwave Subwavelength Antenna Design. Micromachines, 2019, 10, 566.	1.4	2
67	A Critical Assessment of Nano Enhanced Vapor Chamber Wick Structures for Electronics Cooling. , 2021, , .		2
68	Experimental study on electrical properties and stability of CNT bumps in high density interconnects. , 2013, , .		1
69	Enhanced heat spreader based on few-layer graphene intercalated with silane-functionalization molecules. , 2014, , .		1
70	Hotspot test structures for evaluating carbon nanotube microfin coolers and graphene-like heat spreaders. , 2016, , .		1
71	A study of fluid coolant with carbon nanotube suspension for microchannel coolers. , 2008, , .		0
72	Controlling the density of CNTs by different underlayer materials in PECVD growth. , 2013, , .		0

5

#	Article	IF	CITATIONS
73	Reliability of carbon nanotube bumps for chip on film application. , 2013, , .		Ο
74	Study on the verification of IR and RTD methods applied in the thermal measurement of high power chips. , 2014, , .		0
75	Carbon nanotube/solder hybrid structure for interconnect applications. , 2014, , .		0
76	Post-growth processing of carbon nanotubes for interconnect applications - a review. , 2016, , .		0
77	Graphene-CNT hybrid material as potential thermal solution in electronics applications. , 2017, , .		0
78	Improved reliability of electrically conductive adhesives joints on Cu-Plated PCB substrate enhanced by graphene protection barrier. , 2017, , .		0
79	RF Properties of Carbon Nanotube / Copper Composite Through Silicon Via Based CPW Structure for 3D Integrated Circuits. , 2019, , .		0
80	Exploring Graphene Coated Copper Nanoparticles as a multifunctional Nanofiller for Micro-Scaled Copper Paste. , 2021, , .		0