
Teng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/133284/publications.pdf Version: 2024-02-01

TENC 7HANC

#	Article	IF	CITATIONS
1	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
2	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
3	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
4	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
5	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
6	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	27.8	674
7	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
8	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
9	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
10	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
11	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
12	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
13	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
14	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
15	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
16	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
17	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
18	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59

TENG ZHANG

#	Article	IF	CITATIONS
19	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
20	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	4.7	52
21	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	4.7	40
22	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.</mml:math 	7.8	36
23	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
24	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18
25	Candidates for a possible third-generation gravitational wave detector: comparison of ring-Sagnac and sloshing-Sagnac speedmeter interferometers. Classical and Quantum Gravity, 2017, 34, 024001.	4.0	13
26	Implications of the quantum noise target for the Einstein Telescope infrastructure design. Physical Review D, 2020, 101, .	4.7	9
27	Toward observing neutron star collapse with gravitational wave detectors. Physical Review D, 2021, 103, .	4.7	9
28	Effects of static and dynamic higher-order optical modes in balanced homodyne readout for future gravitational waves detectors. Physical Review D, 2017, 95, .	4.7	7
29	A Broadband Signal Recycling Scheme for Approaching the Quantum Limit from Optical Losses. Galaxies, 2021, 9, 3.	3.0	7
30	Quantum noise cancellation in asymmetric speed metres with balanced homodyne readout. New Journal of Physics, 2018, 20, 103040.	2.9	5
31	Feasibility study of beam-expanding telescopes in the interferometer arms for the Einstein Telescope. Physical Review D, 2021, 103, .	4.7	4
32	Enhancing high frequency sensitivity of gravitational wave detectors with a Sagnac interferometer. Physical Review D, 2021, 104, .	4.7	2
33	Quantum squeezing schemes for heterodyne readout. Physical Review D, 2020, 101, .	4.7	1
34	Study of acceleration measurement in gravitational wave detection. Classical and Quantum Gravity, 2022, 39, 055007.	4.0	1
35	Demonstration of a switchable damping system to allow low-noise operation of high- Q low-mass suspension systems. Physical Review D, 2017, 96, .	4.7	0
36	Two-Carrier Scheme: Evading the 3ÂdB Quantum Penalty of Heterodyne Readout in Gravitational-Wave Detectors. Physical Review Letters, 2021, 126, 221301.	7.8	0