Moonsub Shim

List of Publications by Citations

Source: https://exaly.com/author-pdf/1331903/moonsub-shim-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

128	14,634	55	120
papers	citations	h-index	g-index
134	15,638 ext. citations	10.8	6.34
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
128	Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4984-9	11.5	1238
127	Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. <i>Nature</i> , 2008 , 454, 495-500	50.4	977
126	Interfacial heat flow in carbon nanotube suspensions. <i>Nature Materials</i> , 2003 , 2, 731-4	27	926
125	High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. <i>Nature Nanotechnology</i> , 2007 , 2, 230-6	28.7	897
124	Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition. <i>Nano Letters</i> , 2002 , 2, 285-288	11.5	795
123	Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2002 , 124, 9058-9	16.4	612
122	Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. <i>Journal of the American Chemical Society</i> , 2001 , 123, 11512-3	16.4	524
121	n-type colloidal semiconductor nanocrystals. <i>Nature</i> , 2000 , 407, 981-3	50.4	411
120	Electrochromic nanocrystal quantum dots. <i>Science</i> , 2001 , 291, 2390-2	33.3	402
119	Polymer Imprint Lithography with Molecular-Scale Resolution. <i>Nano Letters</i> , 2004 , 4, 2467-2471	11.5	370
118	Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. <i>Small</i> , 2005 , 1, 1110-6	11	326
117	Permanent dipole moment and charges in colloidal semiconductor quantum dots. <i>Journal of Chemical Physics</i> , 1999 , 111, 6955-6964	3.9	320
116	Intraband relaxation in CdSe quantum dots. <i>Physical Review B</i> , 1999 , 60, R2181-R2184	3.3	318
115	Highly Bendable, Transparent Thin-Film Transistors That Use Carbon-Nanotube-Based Conductors and Semiconductors with Elastomeric Dielectrics. <i>Advanced Materials</i> , 2006 , 18, 304-309	24	315
114	High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. <i>Nano Letters</i> , 2015 , 15, 969-73	11.5	278
113	p-Channel, n-Channel Thin Film Transistors and pl Diodes Based on Single Wall Carbon Nanotube Networks. <i>Nano Letters</i> , 2004 , 4, 2031-2035	11.5	258
112	Gamma-Fe2O3/II-VI sulfide nanocrystal heterojunctions. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10269-75	16.4	239

111	Organic-capped ZnO nanocrystals: synthesis and n-type character. <i>Journal of the American Chemical Society</i> , 2001 , 123, 11651-4	16.4	224
110	Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. <i>Applied Physics Letters</i> , 2002 , 81, 913-915	3.4	205
109	Synthesis of Ultralong and High Percentage of Semiconducting Single-walled Carbon Nanotubes. <i>Nano Letters</i> , 2002 , 2, 703-708	11.5	170
108	Double-heterojunction nanorod light-responsive LEDs for display applications. <i>Science</i> , 2017 , 355, 616-6	5 39 .3	157
107	Polymer electrolyte gating of carbon nanotube network transistors. <i>Nano Letters</i> , 2005 , 5, 905-11	11.5	153
106	Charge-Tunable Optical Properties in Colloidal Semiconductor Nanocrystals. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 2369-2373	3.4	148
105	Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. <i>Applied Physics Letters</i> , 2007 , 90, 023516	3.4	143
104	Highly Efficient Gating and Doping of Carbon Nanotubes with Polymer Electrolytes. <i>Nano Letters</i> , 2004 , 4, 927-931	11.5	136
103	Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. <i>Journal of the American Chemical Society</i> , 2006 , 128, 4540-1	16.4	132
102	Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes. <i>Applied Physics Letters</i> , 2006 , 88, 113511	3.4	128
101	Improved Synthesis of Aligned Arrays of Single-Walled Carbon Nanotubes and Their Implementation in Thin Film Type Transistors <i>Journal of Physical Chemistry C</i> , 2007 , 111, 17879-17886	3.8	126
100	Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates. <i>Journal of the American Chemical Society</i> , 2005 , 127, 13808-9	16.4	116
99	Ferroelectrically driven spatial carrier density modulation in graphene. <i>Nature Communications</i> , 2015 , 6, 6136	17.4	107
98	Lifetimes of optical phonons in graphene and graphite by time-resolved incoherent anti-Stokes Raman scattering. <i>Physical Review B</i> , 2010 , 81,	3.3	105
97	Bilayer OrganicIhorganic Gate Dielectrics for High-Performance, Low-Voltage, Single-Walled Carbon Nanotube Thin-Film Transistors, Complementary Logic Gates, and pli Diodes on Plastic Substrates. <i>Advanced Functional Materials</i> , 2006 , 16, 2355-2362	15.6	104
96	Electronically selective chemical functionalization of carbon nanotubes: correlation between Raman spectral and electrical responses. <i>Journal of the American Chemical Society</i> , 2005 , 127, 11460-8	16.4	104
95	Electrical properties and devices of large-diameter single-walled carbon nanotubes. <i>Applied Physics Letters</i> , 2002 , 80, 1064-1066	3.4	104
94	Aglu Bimetallic Nanoparticles with Enhanced Resistance to Oxidation: A Combined Experimental and Theoretical Study. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 26324-26331	3.8	94

93	High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes. <i>ACS Nano</i> , 2015 , 9, 878-85	16.7	94
92	Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching. <i>Nano Letters</i> , 2013 , 13, 1693-8	11.5	88
91	Electrochromic semiconductor nanocrystal films. Applied Physics Letters, 2002, 80, 4-6	3.4	88
90	Fano lineshape and phonon softening in single isolated metallic carbon nanotubes. <i>Physical Review Letters</i> , 2007 , 98, 145504	7.4	86
89	Multilayer Transfer Printing for Pixelated, Multicolor Quantum Dot Light-Emitting Diodes. <i>ACS Nano</i> , 2016 , 10, 4920-5	16.7	85
88	Sub-Bgstrfh-resolution diffractive imaging of single nanocrystals. <i>Nature Physics</i> , 2009 , 5, 129-133	16.2	76
87	Solution-Processed Transistors Using Colloidal Nanocrystals with Composition-Matched Molecular "Solders": Approaching Single Crystal Mobility. <i>Nano Letters</i> , 2015 , 15, 6309-17	11.5	73
86	Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks. <i>Journal of Applied Physics</i> , 2005 , 98, 114302	2.5	73
85	Double-heterojunction nanorods. <i>Nature Communications</i> , 2014 , 5, 3642	17.4	70
84	Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. <i>Nature Communications</i> , 2016 , 7, 12398	17.4	68
83	Resistive random access memory enabled by carbon nanotube crossbar electrodes. <i>ACS Nano</i> , 2013 , 7, 5360-6	16.7	65
82	Doping and Charging in Colloidal Semiconductor Nanocrystals. MRS Bulletin, 2001, 26, 1005-1008	3.2	64
81	Integration of type II nanorod heterostructures into photovoltaics. ACS Nano, 2011, 5, 7677-83	16.7	62
80	Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7522-30	16.4	62
79	Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2618-2634	7.1	61
78	5,6,11,12,17,18-Hexadehydro-1,4,7,10,13,16-hexaethynyltribenzo[a,e,i,]cyclododecene: Synthesis and CpCo-Catalyzed Cycloisomerization to the First Superdelocalized Oligophenylenes. <i>Angewandte Chemie International Edition in English</i> , 1997 , 36, 2103-2108		61
77	Layer-by-layer transfer of multiple, large area sheets of graphene grown in multilayer stacks on a single SiC wafer. <i>ACS Nano</i> , 2010 , 4, 5591-8	16.7	60
76	Size and growth rate dependent structural diversification of Fe3O4/CdS anisotropic nanocrystal heterostructures. <i>ACS Nano</i> , 2009 , 3, 434-40	16.7	60

(2012-2004)

75	Aligned Arrays of Single-Walled Carbon Nanotubes Generated from Random Networks by Orientationally Selective Laser Ablation. <i>Nano Letters</i> , 2004 , 4, 2421-2426	11.5	59	
74	Atomic layer deposited Al2O3 for gate dielectric and passivation layer of single-walled carbon nanotube transistors. <i>Applied Physics Letters</i> , 2007 , 90, 163108	3.4	57	
73	Subfilamentary Networks Cause Cycle-to-Cycle Variability in Memristive Devices. <i>ACS Nano</i> , 2017 , 11, 6921-6929	16.7	55	
72	Photoinduced conductivity changes in carbon nanotube transistors. <i>Applied Physics Letters</i> , 2003 , 83, 3564-3566	3.4	55	
71	Fully transparent thin-film transistors based on aligned carbon nanotube arrays and indium tin oxide electrodes. <i>Advanced Materials</i> , 2009 , 21, 564-8	24	53	
70	Structural Evolution in Metal Oxide/Semiconductor Colloidal Nanocrystal Heterostructures. <i>Chemistry of Materials</i> , 2006 , 18, 6357-6363	9.6	52	
69	Long-Lived Delocalized Electron States in Quantum Dots: A Step-Scan Fourier Transform Infrared Study. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 1494-1496	3.4	51	
68	Direct laser writing of air-stable p-n junctions in graphene. ACS Nano, 2014 , 8, 8831-6	16.7	46	
67	Intraband hole burning of colloidal quantum dots. <i>Physical Review B</i> , 2001 , 64,	3.3	46	
66	PbSe Nanocrystal/TiOx Heterostructured Films: A Simple Route to Nanoscale Heterointerfaces and Photocatalysis. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 11734-11741	3.8	45	
65	Effects of oxygen on the electron transport properties of carbon nanotubes: Ultraviolet desorption and thermally induced processes. <i>Physical Review B</i> , 2005 , 71,	3.3	45	
64	Processing dependent behavior of soft imprint lithography on the 1-10-nm scale. <i>IEEE Nanotechnology Magazine</i> , 2006 , 5, 301-308	2.6	44	
63	Environment-Induced Effects on the Temperature Dependence of Raman Spectra of Single-Layer Graphene. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 20131-20134	3.8	43	
62	Towards the commercialization of colloidal quantum dot solar cells: perspectives on device structures and manufacturing. <i>Energy and Environmental Science</i> , 2020 , 13, 404-431	35.4	43	
61	Prospects for Strained Type-II Nanorod Heterostructures. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2722-2727	6.4	40	
60	Optical phonon lifetimes in single-walled carbon nanotubes by time-resolved Raman scattering. <i>Nano Letters</i> , 2008 , 8, 4642-7	11.5	40	
59	Anisotropic strain-induced curvature in type-II CdSe/CdTe nanorod heterostructures. <i>Journal of the American Chemical Society</i> , 2010 , 132, 3286-8	16.4	39	
58	Effects of Lattice Strain and Band Offset on Electron Transfer Rates in Type-II Nanorod Heterostructures. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1094-8	6.4	38	

57	pH-dependent electron-transport properties of carbon nanotubes. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 23736-41	3.4	38
56	Temperature and gate voltage dependent Raman spectra of single-layer graphene. <i>ACS Nano</i> , 2011 , 5, 5273-9	16.7	36
55	Effects of Copper Precursor Reactivity on the Shape and Phase of Copper Sulfide Nanocrystals. <i>Chemistry of Materials</i> , 2017 , 29, 2390-2397	9.6	34
54	Performance and photovoltaic response of polymer-doped carbon nanotube p-n diodes. <i>ACS Nano</i> , 2008 , 2, 2154-9	16.7	34
53	Metal Oleate Induced Etching and Growth of Semiconductor Nanocrystals, Nanorods, and Their Heterostructures. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10444-51	16.4	32
52	A Novel Phenylene Topology: Total Syntheses of Zigzag [4]- and [5]Phenylene. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 800-804	16.4	31
51	Anisotropic nanocrystal heterostructures: Synthesis and lattice strain. <i>Current Opinion in Solid State and Materials Science</i> , 2010 , 14, 83-94	12	30
50	Lattice Strain and Ligand Effects on the Formation of Cu2⊠S/I-III-VI2 Nanorod Heterostructures through Partial Cation Exchange. <i>Chemistry of Materials</i> , 2017 , 29, 6161-6167	9.6	28
49	Photoresist Contact Patterning of Quantum Dot Films. ACS Nano, 2018, 12, 10024-10031	16.7	25
48	Integration of CdSe/CdSexTe1-x Type-II Heterojunction Nanorods into Hierarchically Porous TiO2 Electrode for Efficient Solar Energy Conversion. <i>Scientific Reports</i> , 2015 , 5, 17472	4.9	23
47	Raman Spectral Evolution in Individual Metallic Single-Walled Carbon Nanotubes upon Covalent Sidewall Functionalization <i>Journal of Physical Chemistry C</i> , 2007 , 111, 17755-17760	3.8	23
46	Single gate p-n junctions in graphene-ferroelectric devices. <i>Applied Physics Letters</i> , 2016 , 108, 203109	3.4	23
45	Enhanced device lifetime of double-heterojunction nanorod light-emitting diodes. <i>Nanoscale</i> , 2017 , 9, 6103-6110	7.7	21
44	Double-Heterojunction Nanorod Light-Emitting Diodes with High Efficiencies at High Brightness Using Self-Assembled Monolayers. <i>ACS Photonics</i> , 2016 , 3, 1862-1868	6.3	21
43	Substrate-enhanced O2 adsorption and complexity in the Raman G-band spectra of individual metallic carbon nanotubes. <i>Physical Review B</i> , 2008 , 78,	3.3	20
42	A Millifluidic Reactor System for Multistep Continuous Synthesis of InP/ZnSeS Nanoparticles. <i>ChemNanoMat</i> , 2018 , 4, 943-953	3.5	18
41	Electrical power dissipation in semiconducting carbon nanotubes on single crystal quartz and amorphous SiO2. <i>Applied Physics Letters</i> , 2011 , 99, 053120	3.4	18
40	Enhanced Air Stability, Charge Separation, and Photocurrent in CdSe/CdTe Heterojunction Nanorods by Thiols. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 20162-20168	3.8	17

39	Growth modes of carbon nanotubes on metal substrates. <i>Journal of Applied Physics</i> , 2006 , 100, 044309	2.5	17
38	Nonuniform compressive strain in horizontally aligned single-walled carbon nanotubes grown on single crystal quartz. <i>ACS Nano</i> , 2009 , 3, 2217-24	16.7	16
37	Spectral Diversity in Raman G-band Modes of Metallic Carbon Nanotubes within a Single Chirality. Journal of Physical Chemistry C, 2008 , 112, 13017-13023	3.8	16
36	Capturing Phase Evolution during Solvothermal Synthesis of Metastable Cu4O3. <i>Chemistry of Materials</i> , 2016 , 28, 3080-3089	9.6	16
35	Continuous Flow Synthesis of Anisotropic Cadmium Selenide and Zinc Selenide Nanoparticles. <i>ChemNanoMat</i> , 2017 , 3, 204-211	3.5	15
34	Role of covalent defects on phonon softening in metallic carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 7103-6	16.4	15
33	Semiconductorpolymer hybrid colloidal nanoparticles. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1284-12	291	15
32	The crystal structure of 5,6,11,12,17,18-hexadehydro-1,4,7,10,13,16-hexaethynyltribenzo[a,e,i]cyclododecene tetrahydrofuran solvate: a case of high organization enforced by chelating alkyne CHIIIO hydrogen bonding. <i>Chemical Communications</i> , 1999 , 1871-1872	5.8	15
31	CdSetdSexTe1 nanorod heterostructures: tuning alloy composition and spatially indirect recombination energies. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11621		14
30	Cu2 S/ZnS Heterostructured Nanorods: Cation Exchange vs. Solution-Liquid-Solid-like Growth. <i>ChemPhysChem</i> , 2016 , 17, 741-51	3.2	14
29	Slow Conductance Relaxation in Graphenellerroelectric Field-Effect Transistors. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 7542-7548	3.8	13
28	5,6,11,12,17,18-Hexadehydro-1,4,7,10,13,16-hexaethinyltribenzo[a,e,i]cyclododecen: Synthese und CpCo-katalysierte Cycloisomerisierung zu den ersten superdelokalisierten Oligophenylenen. <i>Angewandte Chemie</i> , 1997 , 109, 2194-2199	3.6	13
27	Low-frequency noise in ambipolar carbon nanotube transistors. <i>Nano Letters</i> , 2008 , 8, 1090-4	11.5	13
26	Route to Improving Photovoltaics Based on CdSe/CdSeTe Type-II Heterojunction Nanorods: The Effect of Morphology and Cosensitization on Carrier Recombination and Transport. <i>ACS Applied Materials & Communication and Transport (Naterials & Comm</i>	9.5	12
25	Colloidal nanorod heterostructures for photovoltaics and optoelectronics. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 173002	3	11
24	Mechanistic Insights into Size-Focused Growth of Indium Phosphide Nanocrystals in the Presence of Trace Water. <i>Chemistry of Materials</i> , 2020 , 32, 3577-3584	9.6	11
23	SERS EM field enhancement study through fast Raman mapping of Sierpinski carpet arrays. <i>Journal of Raman Spectroscopy</i> , 2010 , 41, 1124-1130	2.3	11
22	Effect of ethanolamine passivation of ZnO nanoparticles in quantum dot light emitting diode structure. <i>Current Applied Physics</i> , 2019 , 19, 998-1005	2.6	10

21	Efficient Type-II Heterojunction Nanorod Sensitized Solar Cells Realized by Controlled Synthesis of Core/Patchy-Shell Structure and CdS Cosensitization. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 19104-19114	9.5	10
20	Unraveling the Origin of Interfacial Oxidation of InP-Based Quantum Dots: Implications for Bioimaging and Optoelectronics. <i>ACS Applied Nano Materials</i> , 2020 , 3, 12325-12333	5.6	10
19	Comment on "Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling" and "Optical transitions in artificial few-electron atoms strongly confined inside ZnO nanocrystals". <i>Physical Review Letters</i> , 2003 , 91, 169703; author reply 169704	7.4	9
18	CuGaS2tulnE2 (E = S, Se) Colloidal Nanorod Heterostructures. <i>Chemistry of Materials</i> , 2019 , 31, 1973-19	89 6	9
17	DC modeling and the source of flicker noise in passivated carbon nanotube transistors. <i>Nanotechnology</i> , 2010 , 21, 385203	3.4	8
16	Influence of defects and doping on optical phonon lifetime and Raman linewidth in carbon nanotubes. <i>Physical Review B</i> , 2011 , 83,	3.3	7
15	Manifestation of Kohn anomaly in 1/f fluctuations in metallic carbon nanotubes. <i>Physical Review Letters</i> , 2009 , 103, 215501	7.4	7
14	Eine neue Phenylentopologie: Totalsynthesen der zickzackftmigen [4]- und [5]Phenylene. <i>Angewandte Chemie</i> , 1999 , 111, 856-860	3.6	7
13	A novel, layered phase in Ti-rich SrTiO3 epitaxial thin films. Advanced Materials, 2015, 27, 861-8	24	6
12	Extending the Spectral Range of Double-Heterojunction Nanorods by Cation Exchange-Induced Alloying. <i>Chemistry of Materials</i> , 2019 , 31, 9307-9316	9.6	6
11	High-Performance Sub-Micrometer Channel WSe Field-Effect Transistors Prepared Using a Flood-Dike Printing Method. <i>ACS Nano</i> , 2017 , 11, 12536-12546	16.7	6
10	Accelerated screening of colloidal nanocrystals using artificial neural network-assisted autonomous flow reactor technology. <i>Nanoscale</i> , 2021 , 13, 17028-17039	7.7	5
9	Solvent-Free Patterning of Colloidal Quantum Dot Films Utilizing Shape Memory Polymers. <i>Micromachines</i> , 2017 , 8, 18	3.3	4
8	Benefitting from Dopant Loss and Ostwald Ripening in Mn Doping of II-VI Semiconductor Nanocrystals. <i>Nanoscale Research Letters</i> , 2015 , 10, 423	5	3
7	Self-aligned Cu etch mask for individually addressable metallic and semiconducting carbon nanotubes. <i>ACS Nano</i> , 2014 , 8, 6500-8	16.7	2
6	Doubly clamped single-walled carbon nanotube resonators operating in MHz frequencies		2
5	Intraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots 2010 , 133-145		2
4	Highly luminescent double-heterojunction nanorods. <i>Journal of Chemical Physics</i> , 2019 , 151, 134706	3.9	1

- 3 A Novel Phenylene Topology: Total Syntheses of Zigzag [4]- and [5]Phenylene **1999**, 38, 800
- Mechanism of morphology variations in colloidal CuGaS2 nanorods. Nanoscale Advances, 2021, 3, 5322-5\\ 31 \)
- Photo- and Thermal Annealing-Induced Processes in Carbon Nanotube Transistors. *Materials Research Society Symposia Proceedings*, **2003**, 789, 199

1