Enni Markkanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1331771/publications.pdf

Version: 2024-02-01

393982 433756 1,585 32 19 31 citations g-index h-index papers 39 39 39 3080 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Defining the molecular landscape of cancer-associated stroma in cutaneous squamous cell carcinoma. Journal of Investigative Dermatology, 2022, , .	0.3	3
2	Measuring DNA Damage Using the Alkaline Comet Assay in Cultured Cells. Bio-protocol, 2021, 11, e4119.	0.2	5
3	Cross-Reactivity and Functionality of Approved Human Immune Checkpoint Blockers in Dogs. Cancers, 2021, 13, 785.	1.7	15
4	Identification of disease-promoting stromal components by comparative proteomic and transcriptomic profiling of canine mammary tumors using laser-capture microdissected FFPE tissue. Neoplasia, 2021, 23, 400-412.	2.3	9
5	Measurement of DNA Damage Using the Neutral Comet Assay in Cultured Cells. Bio-protocol, 2021, 11, e4226.	0.2	О
6	Molecular homology between canine spontaneous oral squamous cell carcinomas and human head-and-neck squamous cell carcinomas reveals disease drivers and therapeutic vulnerabilities. Neoplasia, 2020, 22, 778-788.	2.3	10
7	Differential stromal reprogramming in benign and malignant naturally occurring canine mammary tumours identifies disease-modulating stromal components. Scientific Reports, 2020, 10, 5506.	1.6	20
8	Persistent DNA damage triggers activation of the integrated stress response to promote cell survival under nutrient restriction. BMC Biology, 2020, 18, 36.	1.7	24
9	Know Thy Model: Charting Molecular Homology in Stromal Reprogramming Between Canine and Human Mammary Tumors. Frontiers in Cell and Developmental Biology, 2019, 7, 348.	1.8	10
10	Next-generation RNA sequencing of FFPE subsections reveals highly conserved stromal reprogramming between canine and human mammary carcinoma. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	20
11	MicroRNA Expression Profiling in the Prefrontal Cortex: Putative Mechanisms for the Cognitive Effects of Adolescent High Fat Feeding. Scientific Reports, 2018, 8, 8344.	1.6	14
12	Persistent DNA strand breaks induce a CAF-like phenotype in normal fibroblasts. Oncotarget, 2018, 9, 13666-13681.	0.8	20
13	Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair, 2017, 59, 82-105.	1.3	140
14	Impaired oxidative stress response characterizes HUWE1-promoted X-linked intellectual disability. Scientific Reports, 2017, 7, 15050.	1.6	21
15	Analysis of Gene Expression Signatures in Cancer-Associated Stroma from Canine Mammary Tumours Reveals Molecular Homology to Human Breast Carcinomas. International Journal of Molecular Sciences, 2017, 18, 1101.	1.8	35
16	An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing. BMC Molecular Biology, 2017, 18, 22.	3.0	44
17	DNA Damage and Repair in Schizophrenia and Autism: Implications for Cancer Comorbidity and Beyond. International Journal of Molecular Sciences, 2016, 17, 856.	1.8	66
18	Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds. Molecular Cell, 2016, 61, 449-460.	4.5	185

#	Article	IF	Citations
19	Abstract B40: WEE1 inhibition selectively kills histone H3K36me3-deficient cancers by dNTP starvation. , 2016, , .		О
20	Cells deficient in base-excision repair reveal cancer hallmarks originating from adjustments to genetic instability. Nucleic Acids Research, 2015, 43, 3667-3679.	6.5	39
21	Inhibiting WEE1 Selectively Kills Histone H3K36me3-Deficient Cancers by dNTP Starvation. Cancer Cell, 2015, 28, 557-568.	7.7	244
22	Gap-Directed Translesion DNA Synthesis of an Abasic Site on Circular DNA Templates by a Human Replication Complex. PLoS ONE, 2014, 9, e93908.	1.1	2
23	DNA polymerase \hat{l} -interacting protein 2 is a processivity factor for DNA polymerase \hat{l} » during 8-oxo-7,8-dihydroguanine bypass. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18850-18855.	3.3	44
24	MUTYH DNA glycosylase: the rationale for removing undamaged bases from the DNA. Frontiers in Genetics, 2013, 4, 18.	1.1	64
25	A switch between DNA polymerases \hat{l} and \hat{l} » promotes error-free bypass of 8-oxo-G lesions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20401-20406.	3.3	40
26	Base Excision Repair in Physiology and Pathology of the Central Nervous System. International Journal of Molecular Sciences, 2012, 13, 16172-16222.	1.8	22
27	Regulation of oxidative DNA damage repair: The adenine:8-oxo-guanine problem. Cell Cycle, 2012, 11, 1070-1075.	1.3	38
28	Regulation of oxidative DNA damage repair by DNA polymerase î» and MutYH by cross-talk of phosphorylation and ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 437-442.	3.3	67
29	Ubiquitylation of DNA polymerase λ. FEBS Letters, 2011, 585, 2826-2830.	1.3	16
30	In Vitro Gap-directed Translesion DNA Synthesis of an Abasic Site Involving Human DNA Polymerases $\ddot{\mu}$, \hat{l} », and \hat{l}^2 . Journal of Biological Chemistry, 2011, 286, 32094-32104.	1.6	27
31	Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. DNA Repair, 2010, 9, 604-616.	1.3	272
32	The human checkpoint sensor and alternative DNA clamp Rad9–Rad1–Hus1 modulates the activity of DNA ligase I, a component of the long-patch base excision repair machinery. Biochemical Journal, 2005, 389, 13-17.	1.7	67