
Marcela Krecmerova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1331467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antiviral Activity of Triazine Analogues of 1-(S)-[3-Hydroxy-2-(phosphonomethoxy)propyl]cytosine (Cidofovir) and Related Compounds. Journal of Medicinal Chemistry, 2007, 50, 1069-1077.	6.4	79
2	Ester Prodrugs of Cyclic 1-(<i>S</i>)- [3-Hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine: Synthesis and Antiviral Activity. Journal of Medicinal Chemistry, 2007, 50, 5765-5772.	6.4	50
3	Activities of Several Classes of Acyclic Nucleoside Phosphonates against Camelpox Virus Replication in Different Cell Culture Models. Antimicrobial Agents and Chemotherapy, 2007, 51, 4410-4419.	3.2	45
4	Inhibition of the <i>Escherichia coli</i> 6-Oxopurine Phosphoribosyltransferases by Nucleoside Phosphonates: Potential for New Antibacterial Agents. Journal of Medicinal Chemistry, 2013, 56, 6967-6984.	6.4	41
5	Mechanism of Antiviral Drug Resistance of Vaccinia Virus: Identification of Residues in the Viral DNA Polymerase Conferring Differential Resistance to Antipoxvirus Drugs. Journal of Virology, 2008, 82, 12520-12534.	3.4	38
6	Plasmodium vivax hypoxanthine-guanine phosphoribosyltransferase: A target for anti-malarial chemotherapy. Molecular and Biochemical Parasitology, 2010, 173, 165-169.	1.1	35
7	Synthesis of Ester Prodrugs of 9-(<i>S</i>)-[3-Hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine (HPMPDAP) as Anti-Poxvirus Agents. Journal of Medicinal Chemistry, 2010, 53, 6825-6837.	6.4	30
8	Inhibitory Activities of Three Classes of Acyclic Nucleoside Phosphonates against Murine Polyomavirus and Primate Simian Virus 40 Strains. Antimicrobial Agents and Chemotherapy, 2007, 51, 2268-2273.	3.2	28
9	New prodrugs of two pyrimidine acyclic nucleoside phosphonates: Synthesis and antiviral activity. Bioorganic and Medicinal Chemistry, 2017, 25, 4637-4648.	3.0	26
10	Acyclic nucleoside phosphonates with 5-azacytosine base moiety substituted in C-6 position. Bioorganic and Medicinal Chemistry, 2010, 18, 387-395.	3.0	25
11	Synthesis of purine N9-[2-hydroxy-3-O-(phosphonomethoxy)propyl] derivatives and their side-chain modified analogs as potential antimalarial agents. Bioorganic and Medicinal Chemistry, 2012, 20, 1222-1230.	3.0	25
12	Discovery of Orally Available Prodrugs of the Glutamate Carboxypeptidase II (GCPII) Inhibitor 2-Phosphonomethylpentanedioic Acid (2-PMPA). Journal of Medicinal Chemistry, 2016, 59, 2810-2819.	6.4	25
13	Synthesis of 5'-O-phosphonomethyl derivatives of pyrimidine 2'-deoxynucleosides. Collection of Czechoslovak Chemical Communications, 1990, 55, 2521-2536.	1.0	24
14	Enzymatic Synthesis of Phosphonomethyl Oligonucleotides by Therminator Polymerase. Angewandte Chemie - International Edition, 2007, 46, 2501-2504.	13.8	23
15	New prodrugs of Adefovir and Cidofovir. Bioorganic and Medicinal Chemistry, 2011, 19, 3527-3539.	3.0	22
16	Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant Journal, 2020, 102, 68-84.	5.7	22
17	Amino Acid Ester Prodrugs of Nucleoside and Nucleotide Antivirals. Mini-Reviews in Medicinal Chemistry, 2017, 17, 818-833.	2.4	22
18	Intracellular metabolism of the new antiviral compound 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine. Biochemical Pharmacology, 2008, 76, 997-1005.	4.4	21

#	Article	IF	CITATIONS
19	Nucleotide analogues with immunobiological properties: 9-[2-Hydroxy-3-(phosphonomethoxy)propyl]-adenine (HPMPA), -2,6-diaminopurine (HPMPDAP), and their N6-substituted derivatives. European Journal of Pharmacology, 2006, 540, 191-199.	3.5	19
20	Study of chemical stability of antivirally active 5-azacytosine acyclic nucleoside phosphonates using NMR spectroscopy. Bioorganic and Medicinal Chemistry, 2008, 16, 6778-6782.	3.0	19
21	Mutations Conferring Resistance to Viral DNA Polymerase Inhibitors in Camelpox Virus Give Different Drug-Susceptibility Profiles in Vaccinia Virus. Journal of Virology, 2012, 86, 7310-7325.	3.4	19
22	Transdermal Delivery and Cutaneous Targeting of Antivirals using a Penetration Enhancer and Lysolipid Prodrugs. Pharmaceutical Research, 2014, 31, 1071-1081.	3.5	19
23	Evaluation of Novel Acyclic Nucleoside Phosphonates against Human and Animal Gammaherpesviruses Revealed an Altered Metabolism of Cyclic Prodrugs upon Epstein-Barr Virus Reactivation in P3HR-1 Cells. Journal of Virology, 2013, 87, 12422-12432.	3.4	16
24	5-azacytosine compounds in medicinal chemistry: current stage and future perspectives. Future Medicinal Chemistry, 2012, 4, 991-1005.	2.3	14
25	Alpha anomer of 5-aza-2′-deoxycytidine down-regulates hTERT mRNA expression in human leukemia HL-60 cells. Biochemical Pharmacology, 2008, 75, 965-972.	4.4	13
26	9-[2-(R)-(Phosphonomethoxy)propyl]-2,6-diaminopurine (R)-PMPDAP and its prodrugs: Optimized preparation, including identification of by-products formed, and antiviral evaluation in vitro. Bioorganic and Medicinal Chemistry, 2013, 21, 1199-1208.	3.0	13
27	Enzymatic Polymerization of Phosphonate Nucleosides. ChemBioChem, 2008, 9, 2883-2888.	2.6	12
28	1,2,4-Thiadiazole acyclic nucleoside phosphonates as inhibitors of cysteine dependent enzymes cathepsin K and GSK-3β. Bioorganic and Medicinal Chemistry, 2021, 32, 115998.	3.0	12
29	9-(2-Deoxy-ß-D-xylofuranosyl)adenine and 1-(2-Deoxy-ß-D-xylofuranosyl)thymine: Phosphorylation and Stability. Nucleosides & Nucleotides, 1992, 11, 1393-1409.	0.5	11
30	N4-Acyl derivatives as lipophilic prodrugs of cidofovir and its 5-azacytosine analogue, (S)-HPMP-5-azaC: Chemistry and antiviral activity. Bioorganic and Medicinal Chemistry, 2014, 22, 2896-2906.	3.0	11
31	Investigation of the acid-base and electromigration properties of 5â€azacytosine derivatives using capillary electrophoresis and density functional theory calculations. Journal of Chromatography A, 2017, 1479, 185-193.	3.7	11
32	8-Aza-7,9-dideazaxanthine acyclic nucleoside phosphonate inhibitors of thymidine phosphorylase. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 652-654.	2.2	10
33	Synthesis and antiviral activities of hexadecyloxypropyl prodrugs of acyclic nucleoside phosphonates containing guanine or hypoxanthine and a (S)-HPMP or PEE acyclic moiety. European Journal of Medicinal Chemistry, 2012, 55, 307-314.	5.5	10
34	Enantioselective resolution of side-chain modified gem-difluorinated alcohols catalysed by Candida antarctica lipase B and monitored by capillary electrophoresis. Bioorganic and Medicinal Chemistry, 2019, 27, 1246-1253.	3.0	10
35	2',3'-Dideoxy- and 3'-Azido-2',3'-dideoxynucleosides of 5-Phenyl-2(1H)-pyrimidinone. Preparation of 2',3'-Dideoxypentofuranoses. Collection of Czechoslovak Chemical Communications, 1996, 61, 478-488.	1.0	9
36	Preparation of C-5 Substituted Cidofovir Derivatives. Collection of Czechoslovak Chemical Communications, 2006, 71, 579-594.	1.0	9

MARCELA KRECMEROVA

#	Article	IF	CITATIONS
37	Poxviruses Bearing DNA Polymerase Mutations Show Complex Patterns of Cross-Resistance. Biomedicines, 2022, 10, 580.	3.2	9
38	Synthesis of N9- and N7-[2-Hydroxy-3-(phosphonomethoxy)propyl] Derivatives of N6-Substituted Adenines, 2,6-Diaminopurines and Related Compounds. Collection of Czechoslovak Chemical Communications, 2004, 69, 1889-1913.	1.0	8
39	Lipases as Tools in the Synthesis of Prodrugs from Racemic 9-(2,3-Dihydroxypropyl)adenine. Molecules, 2012, 17, 13813-13824.	3.8	8
40	An enzymatic glycosylation of nucleoside analogues using β-galactosidase from Escherichia coli. Bioorganic and Medicinal Chemistry, 2012, 20, 3111-3118.	3.0	8
41	Cellâ€based <scp>DNA</scp> demethylation detection system for screening of epigenetic drugs in 2D, 3D, and xenograft models. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 133-143.	1.5	8
42	Pyrimidine Acyclic Nucleotide Analogues with Aromatic Substituents in C-5 Position. Collection of Czechoslovak Chemical Communications, 2007, 72, 927-951.	1.0	7
43	Utilization of 1,6-anhydrohexoses for the preparation of some aliphatic adenosine analogs. Collection of Czechoslovak Chemical Communications, 1989, 54, 2753-2766.	1.0	7
44	Synthesis of Optically Active N6-Alkyl Derivatives of (R)-3-(Adenin-9-yl)-2-hydroxypropanoic Acid and Related Compounds. Collection of Czechoslovak Chemical Communications, 2003, 68, 931-950.	1.0	6
45	Resistance to the nucleotide analogue cidofovir in HPV(+) cells: a multifactorial process involving UMP/CMP kinase 1. Oncotarget, 2016, 7, 10386-10401.	1.8	6
46	Novel and Efficient Synthesis of <i>gem</i> â€Ðifluorinated Derivatives of Acyclic Nucleoside Phosphonates (ANPs). ChemistrySelect, 2016, 1, 2102-2106.	1.5	6
47	Phosphofructokinases A and B from Mycobacterium tuberculosis Display Different Catalytic Properties and Allosteric Regulation. International Journal of Molecular Sciences, 2021, 22, 1483.	4.1	6
48	Synthesis of 5-Phenyl-2(1H)-pyrimidinone Nucleosides. Collection of Czechoslovak Chemical Communications, 1996, 61, 458-477.	1.0	5
49	Synthesis of 5-Phenylcytosine Nucleoside Derivatives. Collection of Czechoslovak Chemical Communications, 1996, 61, 645-655.	1.0	5
50	Preparation of 5-Benzyluracil and 5-Benzylcytosine Nucleosides as Potential Inhibitors of Uridine Phosphorylase. Collection of Czechoslovak Chemical Communications, 1996, 61, 627-644.	1.0	5
51	Inhibitory Potency of 5-Benzyluracil, 5-Phenylcytosine and 5-Phenylpyrimidin-2-one Nucleosides Against Uridine Phosphorylase from Mouse Leukemic L1210 Cells. Nucleosides & Nucleotides, 1999, 18, 2551-2564.	0.5	4
52	Synthesis of O2- and N3-(2-Phosphonomethoxy)ethyl Derivatives of 6-Phenyl- and 6-Pyridinyl-5-azacytosine. Heterocycles, 2011, 83, 797.	0.7	4
53	Synthesis of fluorinated acyclic nucleoside phosphonates with 5-azacytosine base moiety. Tetrahedron, 2019, 75, 130529.	1.9	4
54	Preparation of Purine 2'-Deoxy-5'-O-phosphonomethylnucleosides and 2'-Deoxy-3'-O-phosphonomethylnucleosides. Collection of Czechoslovak Chemical Communications, 1993, 58, 421-434.	1.0	3

#	Article	IF	CITATIONS
55	Synthesis of 3-(4-Pyridinyl)-, 3-(2-Chloro-4-pyridinyl)- and 3-(2-Amino-4-pyridinyl)propoxymethanephosphonic Acid. Collection of Czechoslovak Chemical Communications, 1995, 60, 670-680.	1.0	3
56	Syntheses of 1-[2-(Phosphonomethoxy)Alkyl]Thymine Monophosphates and an Evaluation of their Inhibitory Activity Toward Human Thymidine Phosphorylase. Nucleosides, Nucleotides and Nucleic Acids, 2012, 31, 159-171.	1.1	3
57	Effect of Different DNA Demethylating Agents on In vitro Cultures of Peach Rootstock GF 677. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47, .	1.1	3
58	Regioselective Palmitoylation of 9-(2,3-Dihydroxy- propyl)adenine Catalyzed by a Glycopolymer-enzyme Conjugate. Molecules, 2016, 21, 648.	3.8	2
59	Alkoxylalkyl Esters of Nucleotide Analogs Inhibit Polyomavirus DNA Replication and Large T Antigen Activities. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	2
60	Enhancing of enzymatic palmitoylation of racemic 9-(2,3-dihydroxypropyl)adenine in co-solvent mixture as the reaction media. New Biotechnology, 2014, 31, S78.	4.4	1
61	Utilization of 1,3-Dioxolanes in the Synthesis of α-branched Alkyl and Aryl 9-[2-(Phosphonomethoxy)Ethyl]Purines and Study of the Influence of α-branched Substitution for Potential Biological Activity. Nucleosides, Nucleotides and Nucleic Acids, 2019, 38, 119-156.	1.1	1
62	New antiviral agent, 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine: esters and base-modified derivatives. , 2008, , .		1
63	Synthesis of C-5 substituted HPMPC (cidofovir) derivatives. , 2005, , .		Ο
64	Preparation of Phosphonomethyl Ethers Derived from 2-Phenylethanol and Its Amino Derivatives. Collection of Czechoslovak Chemical Communications, 1995, 60, 659-669.	1.0	0
65	Abstract 400: 5-azacytidine nucleosides and their derivatives: Molecular hallmarks of drug resistance. , 2014, , .		Ο
66	Abstract 2944: 5-azacytidine nucleosides and their derivatives: Molecular hallmarks of drug resistance & alternative therapeutic regimen. , 2015, , .		0
67	Abstract 4453: Molecular hallmarks of drug resistance to DNA methylation inhibitors and alternative therapeutic regimen for overcoming resistance. , 2016, , .		0
68	From 5-Azapyrimidine Chemistry to Thiadiazoles. , 2022, 116, 152-162.		0