
Mauro C Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1331313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fischer–Tropsch Synthesis: Effect of the Promoter's Ionic Charge and Valence Level Energy on Activity. Reactions, 2021, 2, 408-426.	0.9	3
2	Tailoring the product selectivity of Co/SiO2 Fischer-Tropsch synthesis catalysts by lanthanide doping. Catalysis Today, 2020, 343, 80-90.	2.2	12
3	Hydrogen production by the steam reforming of ethanol over cobalt catalysts supported on different carbon nanostructures. Catalysis Today, 2020, 344, 66-74.	2.2	25
4	Effects of Co Addition to Supported Ni Catalysts on Hydrogen Production from Oxidative Steam Reforming of Ethanol. Energy & Fuels, 2018, 32, 12814-12825.	2.5	18
5	Effect of Zn addition on the performance of Ni/Al2O3 catalyst for steam reforming of ethanol. Applied Catalysis A: General, 2016, 519, 85-98.	2.2	43
6	Influence of carbide formation on oxygenates selectivity during Fischer-Tropsch synthesis over Ce-containing Co catalysts. Catalysis Today, 2016, 261, 40-47.	2.2	41
7	Ethanol conversion at low temperature over CeO2—Supported Ni-based catalysts. Effect of Pt addition to Ni catalyst. Applied Catalysis B: Environmental, 2016, 181, 754-768.	10.8	72
8	Fischer–Tropsch Mechanism: ¹³ C ¹⁸ O Tracer Studies on a Ceria–Silica Supported Cobalt Catalyst and a Doubly Promoted Iron Catalyst. Industrial & Engineering Chemistry Research, 2015, 54, 6438-6453.	1.8	16
9	Effects of Ceria Morphology on Catalytic Performance of Ni/CeO2 Catalysts for Low Temperature Steam Reforming of Ethanol. Topics in Catalysis, 2015, 58, 281-294.	1.3	51
10	The study of the performance of PtNi/CeO2–nanocube catalysts for low temperature steam reforming of ethanol. Catalysis Today, 2015, 242, 35-49.	2.2	69
11	The Influence of Ammonia on the Electroless Deposition of CoB Alloys from Alkaline Citrate containing Baths. Electrochimica Acta, 2014, 147, 752-757.	2.6	4
12	A Relationship between the Production of Oxygenates from Ethanol/Steam Mixtures and the Oxygen Mobility in Transition Metal Oxide Doped CeO ₂ ·SiO ₂ Catalysts. Journal of Physical Chemistry C, 2014, 118, 28007-28016.	1.5	12
13	Ethanol Reforming Reactions Over Co and Cu Based Catalysts Obtained from LaCoCuO3 Perovskite-Type Oxides. Topics in Catalysis, 2014, 57, 637-655.	1.3	8
14	Fischer–Tropsch Synthesis: Studies on the Effect of Support Doping with Si, Mn and Cr on the Selectivity to Alcohols in Ceria Supported Cobalt Catalysts. Topics in Catalysis, 2014, 57, 550-560.	1.3	8
15	Ethanol Steam Reforming: Higher Dehydrogenation Selectivities Observed by Tuning Oxygen-Mobility and Acid/Base Properties with Mn in CeO2A·MnOx·SiO2 Catalysts. Topics in Catalysis, 2013, 56, 1634-1643.	1.3	16
16	Fischer Tropsch synthesis: Deuterium isotopic study for the formation of oxygenates over CeO2 supported Pt–Co catalysts. Catalysis Communications, 2012, 25, 12-17.	1.6	27
17	Low Temperature Water Gas Shift: Evaluation of Pt/HfO ₂ and Correlation between Reaction Mechanism and Periodic Trends in Tetravalent (Ti, Zr, Hf, Ce, Th) Metal Oxides. ACS Catalysis, 2011, 1, 1375-1383.	5.5	26
18	Fischerâ^'Tropsch Synthesis: Influence of Mn on the Carburization Rates and Activities of Fe-Based Catalysts by TPR-EXAFS/XANES and Catalyst Testing. Journal of Physical Chemistry C, 2011, 115, 4783-4792.	1.5	56

MAURO C RIBEIRO

#	Article	IF	CITATIONS
19	Fischer–Tropsch synthesis: Metal–support interfacial contact governs oxygenates selectivity over CeO2 supported Pt–Co catalysts. Applied Catalysis A: General, 2011, 393, 17-23.	2.2	58
20	Studies on KIT-6 Supported Cobalt Catalyst for Fischer–Tropsch Synthesis. Catalysis Letters, 2010, 134, 37-44.	1.4	24
21	Fischer–Tropsch Synthesis: Effect of Water Over Iron-Based Catalysts. Catalysis Letters, 2010, 140, 98-105.	1.4	44
22	Fischerâ^'Tropsch Synthesis: An In-Situ TPR-EXAFS/XANES Investigation of the Influence of Group I Alkali Promoters on the Local Atomic and Electronic Structure of Carburized Iron/Silica Catalysts. Journal of Physical Chemistry C, 2010, 114, 7895-7903.	1.5	138
23	Low temperature water–gas shift: Differences in oxidation states observed with partially reduced Pt/MnOX and Pt/CeOX catalysts yield differences in OH group reactivity. Catalysis Communications, 2010, 11, 1193-1199.	1.6	7
24	Group 11 (Cu, Ag, Au) promotion of 15%Co/Al2O3 Fischer–Tropsch synthesis catalysts. Applied Catalysis A: General, 2009, 361, 137-151.	2.2	92
25	The influence of electrochemical pre-treatment of B-doped diamond films on the electrodeposition of Pt. Journal of the Brazilian Chemical Society, 2006, 17, 667-673.	0.6	8
26	Filmes de diamante CVD dopado com boro. Parte I . Histórico, produção e caracterização. Quimica Nova, 2005, 28, 317-325.	0.3	15