List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1330686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Too Much Too Soon—Tissue-specific Inactivation of Deiodinase Type 3 Prematurely Exposes Brown Fat to Thyroid Hormone. Endocrinology, 2022, 163, .	1.4	4
2	Determination of 3-iodothyronamine (3-T1AM) in mouse liver using liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1165, 122553.	1.2	1
3	Thyroid hormones in the regulation of brown adipose tissue thermogenesis. Endocrine Connections, 2021, 10, R106-R115.	0.8	29
4	An improved method for the precise unravelment of non-shivering brown fat thermokinetics. Scientific Reports, 2021, 11, 4799.	1.6	11
5	Thyroid wars: the rise of central actions. Trends in Endocrinology and Metabolism, 2021, 32, 659-671.	3.1	16
6	Maternal Thyroid Hormone Programs Cardiovascular Functions in the Offspring. Thyroid, 2021, 31, 1424-1435.	2.4	11
7	Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nature Metabolism, 2021, 3, 1415-1431.	5.1	45
8	Leptin counteracts hypothermia in hypothyroidism through its pyrexic effects and by stabilizing serum thyroid hormone levels. Molecular Metabolism, 2021, 54, 101348.	3.0	9
9	Orally Induced Hyperthyroidism Regulates Hypothalamic AMP-Activated Protein Kinase. Nutrients, 2021, 13, 4204.	1.7	2
10	More Than Fever - Novel Concepts in the Regulation of Body Temperature by Thyroid Hormones. Experimental and Clinical Endocrinology and Diabetes, 2020, 128, 428-431.	0.6	12
11	N- and O-Acetylated 3-lodothyronamines Have No Metabolic or Thermogenic Effects in Male Mice. European Thyroid Journal, 2020, 9, 57-66.	1.2	4
12	Unraveling the Molecular Basis for Successful Thyroid Hormone Replacement Therapy: The Need for New Thyroid Tissue- and Pathway-Specific Biomarkers. Experimental and Clinical Endocrinology and Diabetes, 2020, 128, 473-478.	0.6	2
13	Cross-sectional analysis of trace element status in thyroid disease. Journal of Trace Elements in Medicine and Biology, 2020, 58, 126430.	1.5	17
14	Dopamine receptor D1- and D2-agonists do not spark brown adipose tissue thermogenesis in mice. Scientific Reports, 2020, 10, 20203.	1.6	6
15	Maternal Brown Fat Thermogenesis Programs Glucose Tolerance in the Male Offspring. Cell Reports, 2020, 33, 108351.	2.9	6
16	Nesfatin-1 decreases the motivational and rewarding value of food. Neuropsychopharmacology, 2020, 45, 1645-1655.	2.8	22
17	CD5L Constitutes a Novel Biomarker for Integrated Hepatic Thyroid Hormone Action. Thyroid, 2020, 30, 908-923.	2.4	8
18	Central Hypothyroidism Impairs Heart Rate Stability and Prevents Thyroid Hormone-Induced Cardiac Hypertrophy and Pyrexia. Thyroid, 2020, 30, 1205-1216.	2.4	16

#	Article	IF	CITATIONS
19	Thyroid-Hormone-Induced Browning of White Adipose Tissue Does Not Contribute to Thermogenesis and Glucose Consumption. Cell Reports, 2019, 27, 3385-3400.e3.	2.9	76
20	Aortic effects of thyroid hormone in male mice. Journal of Molecular Endocrinology, 2019, 62, 91-99.	1.1	7
21	Effects of sildenafil treatment on thermogenesis and glucose homeostasis in diet-induced obese mice. Nutrition and Diabetes, 2018, 8, 9.	1.5	9
22	Low-level mitochondrial heteroplasmy modulates DNA replication, glucose metabolism and lifespan in mice. Scientific Reports, 2018, 8, 5872.	1.6	26
23	In vivo Effects of Repeated Thyronamine Administration in Male C57BL/6J Mice. European Thyroid Journal, 2018, 7, 3-12.	1.2	15
24	Maternal thyroid hormone is required for parvalbumin neurone development in the anterior hypothalamic area. Journal of Neuroendocrinology, 2018, 30, e12573.	1.2	27
25	3-lodothyronamine Activates a Set of Membrane Proteins in Murine Hypothalamic Cell Lines. Frontiers in Endocrinology, 2018, 9, 523.	1.5	12
26	The Trace Amine-Associated Receptor 1 Agonist 3-lodothyronamine Induces Biased Signaling at the Serotonin 1b Receptor. Frontiers in Pharmacology, 2018, 9, 222.	1.6	22
27	Reduced expression of thyroid hormone receptor β in human nonalcoholic steatohepatitis. Endocrine Connections, 2018, 7, 1448-1456.	0.8	35
28	3-lodothyronamine Induces Tail Vasodilation Through Central Action in Male Mice. Endocrinology, 2017, 158, 1977-1984.	1.4	39
29	Neuroblast differentiation during development and in neuroblastoma requires KIF1BÎ ² -mediated transport of TRKA. Genes and Development, 2017, 31, 1036-1053.	2.7	23
30	The thermogenic effect of nesfatin-1 requires recruitment of the melanocortin system. Journal of Endocrinology, 2017, 235, 111-122.	1.2	15
31	Tanycytes control the hormonal output of the hypothalamic-pituitary-thyroid axis. Nature Communications, 2017, 8, 484.	5.8	81
32	Dwarfism and insulin resistance in male offspring caused by α1-adrenergic antagonism during pregnancy. Molecular Metabolism, 2017, 6, 1126-1136.	3.0	6
33	Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance. Cell Metabolism, 2017, 26, 212-229.e12.	7.2	167
34	3-lodothyronamine Decreases Expression of Genes Involved in Iodide Metabolism in Mouse Thyroids and Inhibits Iodide Uptake in PCCL3 Thyrocytes. Thyroid, 2017, 27, 11-22.	2.4	26
35	Thermoregulatory and Cardiovascular Consequences of a Transient Thyrotoxicosis and Recovery in Male Mice. Endocrinology, 2016, 157, 2957-2967.	1.4	21
36	Positive correlation of thyroid hormones and serum copper in children with congenital hypothyroidism. Journal of Trace Elements in Medicine and Biology, 2016, 37, 90-95.	1.5	11

#	Article	IF	CITATIONS
37	Leptin Raises Defended Body Temperature without Activating Thermogenesis. Cell Reports, 2016, 14, 1621-1631.	2.9	116
38	Breaking BAT: can browning create a better white?. Journal of Endocrinology, 2016, 228, R19-R29.	1.2	33
39	Thyroid Hormone Receptor Mutation and Neurodevelopment. Contemporary Clinical Neuroscience, 2016, , 103-117.	0.3	1
40	Thyroid hormone drives the expression of mouse carbonic anhydrase Car4 in kidney, lung and brain. Molecular and Cellular Endocrinology, 2015, 416, 19-26.	1.6	3
41	3â€lodothyroacetic acid lacks thermoregulatory and cardiovascular effects <i>in vivo</i> . British Journal of Pharmacology, 2015, 172, 3426-3433.	2.7	28
42	3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling. Journal of Molecular Endocrinology, 2015, 54, 205-216.	1.1	54
43	Der selen/Kupfer Koeffizient – ein neuer biomarker für Schilddrüsenhormonresistenz?. Perspectives in Science, 2015, 3, 44-45.	0.6	1
44	Biosynthesis of 3-lodothyronamine From T4 in Murine Intestinal Tissue. Endocrinology, 2015, 156, 4356-4364.	1.4	63
45	Brown fat and vascular heat dissipation. Adipocyte, 2014, 3, 221-223.	1.3	17
46	Elucidating the actions of 3-lodothyroacetic acid in thermoregulation and cardiovascular function. Experimental and Clinical Endocrinology and Diabetes, 2014, 122, .	0.6	0
47	Identification of thyroid hormone response elements <i>inÂvivo</i> using mice expressing a tagged thyroid hormone receptor α1. Bioscience Reports, 2013, 33, e00027.	1.1	14
48	Inappropriate heat dissipation ignites brown fat thermogenesis in mice with a mutant thyroid hormone receptor α1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16241-16246.	3.3	86
49	Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions. Journal of Clinical Investigation, 2013, 123, 509-516.	3.9	81
50	Serum copper as a novel biomarker for resistance to thyroid hormone. Biochemical Journal, 2012, 443, 103-109.	1.7	43
51	Thyroid hormone and the central control of homeostasis. Journal of Molecular Endocrinology, 2012, 49, R29-R35.	1.1	89
52	TSH Compensates Thyroid-Specific IGF-I Receptor Knockout and Causes Papillary Thyroid Hyperplasia. Molecular Endocrinology, 2011, 25, 1867-1879.	3.7	22
53	Physiological consequences of the TR $\hat{1}\pm 1$ aporeceptor state. Heart Failure Reviews, 2010, 15, 111-115.	1.7	14
54	Thyroid Hormones Regulate Selenoprotein Expression and Selenium Status in Mice. PLoS ONE, 2010, 5, e12931.	1.1	41

#	Article	IF	CITATIONS
55	The Thyroid Hormone Receptor α1 Protein Is Expressed in Embryonic Postmitotic Neurons and Persists in Most Adult Neurons. Molecular Endocrinology, 2010, 24, 1904-1916.	3.7	113
56	Consequences of Monocarboxylate Transporter 8 Deficiency for Renal Transport and Metabolism of Thyroid Hormones in Mice. Endocrinology, 2010, 151, 802-809.	1.4	56
57	Adaptations of the Autonomous Nervous System Controlling Heart Rate Are Impaired by a Mutant Thyroid Hormone Receptor-α1. Endocrinology, 2010, 151, 2388-2395.	1.4	41
58	Analysis of Hypertrophic Thyrotrophs in Pituitaries of Athyroid Pax8â^'/â^' Mice. Endocrinology, 2009, 150, 4443-4449.	1.4	19
59	Interference of a Mutant Thyroid Hormone Receptor α1 with Hepatic Glucose Metabolism. Endocrinology, 2009, 150, 2940-2947.	1.4	42
60	Severe psychomotor and metabolic damages caused by a mutant thyroid hormone receptor alpha 1 in mice: can patients with a similar mutation be found and treated?. Acta Paediatrica, International Journal of Paediatrics, 2008, 97, 1605-1610.	0.7	33
61	Male congenital hypothyroid Pax8â^'/â^' mice are infertile despite adequate treatment with thyroid hormone. Journal of Endocrinology, 2007, 192, 99-109.	1.2	35
62	Congenital Hypothyroid Female Pax8-Deficient Mice Are Infertile Despite Thyroid Hormone Replacement Therapy. Endocrinology, 2007, 148, 719-725.	1.4	100
63	Expression and thyroid hormone regulation of annexins in the anterior pituitary. Journal of Endocrinology, 2007, 195, 385-392.	1.2	10
64	Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor α1. EMBO Journal, 2007, 26, 4535-4545.	3.5	116
65	Constitutive Expression and Regulated Release of the Transmembrane Chemokine CXCL16 in Human and Murine Skin. Journal of Investigative Dermatology, 2007, 127, 1444-1455.	0.3	66
66	Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. Journal of Clinical Investigation, 2007, 117, 627-635.	3.9	313
67	Athyroid Pax8â^'/â^' Mice Cannot Be Rescued by the Inactivation of Thyroid Hormone Receptor α1. Endocrinology, 2005, 146, 3179-3184.	1.4	35
68	The Monocarboxylate Transporter 8 Linked to Human Psychomotor Retardation Is Highly Expressed in Thyroid Hormone-Sensitive Neuron Populations. Endocrinology, 2005, 146, 1701-1706.	1.4	230
69	Generation of Thyrotropin-Releasing Hormone Receptor 1-Deficient Mice as an Animal Model of Central Hypothyroidism. Molecular Endocrinology, 2004, 18, 1450-1460.	3.7	76
70	Identification of new thyroid hormone dependent biomarkers for a successful replacement therapy. Endocrine Abstracts, 0, , .	0.0	1