Timothy A Mckinsey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1330649/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	COVID-19 and BRD4: a stormy and cardiotoxic bromo-romance. , 2022, 2, .		2
2	Female and male mice have differential longterm cardiorenal outcomes following a matched degree of ischemia–reperfusion acute kidney injury. Scientific Reports, 2022, 12, 643.	3.3	18
3	Histone deacetylase 6 inhibition restores leptin sensitivity and reduces obesity. Nature Metabolism, 2022, 4, 44-59.	11.9	20
4	Reversible lysine fatty acylation of an anchoring protein mediates adipocyte adrenergic signaling. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
5	T cell immunotherapy for cardiac fibrosis: mRNA starts the CAR. Cell Stem Cell, 2022, 29, 352-354.	11.1	4
6	Therapeutic targets for cardiac fibrosis: from old school to next-gen. Journal of Clinical Investigation, 2022, 132, .	8.2	53
7	Arterial wall rejuvenation: the potential of targeting MMP2 to treat vascular aging. Cardiovascular Research, 2022, , .	3.8	1
8	HDAC6 modulates myofibril stiffness and diastolic function of the heart. Journal of Clinical Investigation, 2022, 132, .	8.2	12
9	Regulation of extracellular matrix composition by fibroblasts during perinatal cardiac maturation. Journal of Molecular and Cellular Cardiology, 2022, 169, 84-95.	1.9	7
10	Tissue is the issue: Endomyocardial biopsies to elucidate molecular mechanisms and tailor therapy for HFpEF. Journal of Molecular and Cellular Cardiology, 2022, 169, 111-112.	1.9	0
11	Cardiac Remodeling During Pregnancy With Metabolic Syndrome. Circulation, 2021, 143, 699-712.	1.6	11
12	Acute Kidney Injury Results in Long-Term Diastolic Dysfunction That Is Prevented by Histone Deacetylase Inhibition. JACC Basic To Translational Science, 2021, 6, 119-133.	4.1	17
13	Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes Enables Modeling of Human Hypertrophic Cardiomyopathy. Stem Cell Reports, 2021, 16, 519-533.	4.8	33
14	Suppression of canonical TGF-l ² signaling enables GATA4 to interact with H3K27me3 demethylase JMJD3 to promote cardiomyogenesis. Journal of Molecular and Cellular Cardiology, 2021, 153, 44-59.	1.9	18
15	HDAC Inhibition Reverses Preexisting Diastolic Dysfunction and Blocks Covert Extracellular Matrix Remodeling. Circulation, 2021, 143, 1874-1890.	1.6	71
16	A transcriptional switch governs fibroblast activation in heart disease. Nature, 2021, 595, 438-443.	27.8	100
17	DUSP5-mediated inhibition of smooth muscle cell proliferation suppresses pulmonary hypertension and right ventricular hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H382-H389.	3.2	10
18	Cat-apulting Toward a Molecular Understanding of HFpEF. JACC Basic To Translational Science, 2021, 6, 673-675	4.1	0

#	Article	IF	CITATIONS
19	The ryanodine receptor stabilizer S107 ameliorates contractility of adult Rbm20 knockout rat cardiomyocytes. Physiological Reports, 2021, 9, e15011.	1.7	7
20	Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H684-H701.	3.2	16
21	Cortical bone stem cell-derived exosomes' therapeutic effect on myocardial ischemia-reperfusion and cardiac remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1014-H1029.	3.2	14
22	Matrix-Degrading Enzyme Expression and Aortic Fibrosis During Continuous-Flow Left Ventricular Mechanical Support. Journal of the American College of Cardiology, 2021, 78, 1782-1795.	2.8	14
23	HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Science Translational Medicine, 2020, 12, .	12.4	75
24	Defining decreased protein succinylation of failing human cardiac myofibrils in ischemic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2020, 138, 304-317.	1.9	27
25	A Phosphatase Anchor Weighs on the Heart. Circulation, 2020, 142, 963-966.	1.6	3
26	ERRing on the Side of a Mature Heart. Circulation Research, 2020, 126, 1703-1705.	4.5	0
27	Structural and in Vivo Characterization of Tubastatin A, a Widely Used Histone Deacetylase 6 Inhibitor. ACS Medicinal Chemistry Letters, 2020, 11, 706-712.	2.8	47
28	Site-specific acetyl-mimetic modification of cardiac troponin I modulates myofilament relaxation and calcium sensitivity. Journal of Molecular and Cellular Cardiology, 2020, 139, 135-147.	1.9	19
29	Dynamic Chromatin Targeting of BRD4 Stimulates Cardiac Fibroblast Activation. Circulation Research, 2019, 125, 662-677.	4.5	105
30	Physiological Biomimetic Culture System for Pig and Human Heart Slices. Circulation Research, 2019, 125, 628-642.	4.5	60
31	ABHD5 cleaves HDAC4 to benefit the heart. Nature Metabolism, 2019, 1, 1034-1035.	11.9	3
32	Transcatheter aortic valve replacements alter circulating serum factors to mediate myofibroblast deactivation. Science Translational Medicine, 2019, 11, .	12.4	41
33	Metabolomics assessment reveals oxidative stress and altered energy production in the heart after ischemic acute kidney injury in mice. Kidney International, 2019, 95, 590-610.	5.2	61
34	Putting the Heat on Cardiac Fibrosis. JACC Basic To Translational Science, 2019, 4, 200-203.	4.1	2
35	Gold Nanoparticle-Functionalized Reverse Thermal Gel for Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2019, 11, 18671-18680.	8.0	47
36	A PDE3A Promoter Polymorphism Regulates cAMP-Induced Transcriptional Activity in Failing Human Myocardium. Journal of the American College of Cardiology, 2019, 73, 1173-1184.	2.8	18

#	Article	IF	CITATIONS
37	Epigenetic therapies in heart failure. Journal of Molecular and Cellular Cardiology, 2019, 130, 197-204.	1.9	23
38	HDAC5 catalytic activity suppresses cardiomyocyte oxidative stress and NRF2 target gene expression. Journal of Biological Chemistry, 2019, 294, 8640-8652.	3.4	27
39	Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Science Translational Medicine, 2018, 10, .	12.4	114
40	Epigenetics in Cardiac Fibrosis. JACC Basic To Translational Science, 2018, 3, 704-715.	4.1	75
41	Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture. F1000Research, 2018, 7, 1713.	1.6	20
42	Interleukin-37 suppresses the osteogenic responses of human aortic valve interstitial cells in vitro and alleviates valve lesions in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1631-1636.	7.1	91
43	Histone deacetylase 3 regulates the inflammatory gene expression programme of rheumatoid arthritis fibroblast-like synoviocytes. Annals of the Rheumatic Diseases, 2017, 76, 277-285.	0.9	118
44	Overlapping and Divergent Actions of Structurally Distinct Histone Deacetylase Inhibitors in Cardiac Fibroblasts. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 140-150.	2.5	24
45	BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure. Science Translational Medicine, 2017, 9, .	12.4	203
46	Tryptophan hydroxylase 1 Inhibition Impacts Pulmonary Vascular Remodeling in Two Rat Models of Pulmonary Hypertension. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 267-279.	2.5	42
47	Class I HDACs control a JIP1-dependent pathway for kinesin-microtubule binding in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2017, 112, 74-82.	1.9	12
48	p38α. Circulation, 2017, 136, 562-565.	1.6	6
49	BRD4 inhibition for the treatment of pathological organ fibrosis. F1000Research, 2017, 6, 1015.	1.6	47
50	DUSP5 Functions in a Feedback Loop to Suppress TNFαâ€Induced ERK1/2 Phosphorylation and Inflammation in Adipocytes. FASEB Journal, 2017, 31, 794.12.	0.5	0
51	Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ. Cellular Signalling, 2016, 28, 1015-1024.	3.6	23
52	Discovery of novel small molecule inhibitors of cardiac hypertrophy using high throughput, high content imaging. Journal of Molecular and Cellular Cardiology, 2016, 97, 106-113.	1.9	31
53	Signal-Dependent Recruitment of BRD4 to Cardiomyocyte Super-Enhancers Is Suppressed by a MicroRNA. Cell Reports, 2016, 16, 1366-1378.	6.4	70
54	Nuclear PTEN functions as an essential regulator of SRF-dependent transcription to control smooth muscle differentiation. Nature Communications, 2016, 7, 10830.	12.8	53

#	Article	IF	CITATIONS
55	Inflammatory cytokines epigenetically regulate rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing HDAC5 expression. Annals of the Rheumatic Diseases, 2016, 75, 430-438.	0.9	68
56	Epigenetic regulation of cardiac fibrosis. Journal of Molecular and Cellular Cardiology, 2016, 92, 206-213.	1.9	47
57	TNAP: a new player in cardiac fibrosis? Focus on "Tissue-nonspecific alkaline phosphatase as a target of sFRP2 in cardiac fibroblasts― American Journal of Physiology - Cell Physiology, 2015, 309, C137-C138.	4.6	2
58	Diet and sex modify exercise and cardiac adaptation in the mouse. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H135-H145.	3.2	35
59	Non-sirtuin histone deacetylases in the control of cardiac aging. Journal of Molecular and Cellular Cardiology, 2015, 83, 14-20.	1.9	44
60	Emerging Roles for Histone Deacetylases in Pulmonary Hypertension and Right Ventricular Remodeling (2013 Grover Conference series). Pulmonary Circulation, 2015, 5, 63-72.	1.7	26
61	Promiscuous actions of small molecule inhibitors of the protein kinase Dâ€class IIa HDAC axis in striated muscle. FEBS Letters, 2015, 589, 1080-1088.	2.8	10
62	Reversal of severe angioproliferative pulmonary arterial hypertension and right ventricular hypertrophy by combined phosphodiesterase-5 and endothelin receptor inhibition. Journal of Translational Medicine, 2014, 12, 314.	4.4	15
63	Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proceedings of the United States of America, 2014, 111, E5178-86.	7.1	92
64	Endoplasmic Reticulum Stress Effector CCAAT/Enhancerâ€binding Protein Homologous Protein (CHOP) Regulates Chronic Kidney Disease–Induced Vascular Calcification. Journal of the American Heart Association, 2014, 3, e000949.	3.7	49
65	BET-ting on chromatin-based therapeutics for heart failure. Journal of Molecular and Cellular Cardiology, 2014, 74, 98-102.	1.9	48
66	Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. Journal of Molecular and Cellular Cardiology, 2014, 67, 112-125.	1.9	146
67	Targeting cardiac fibroblasts to treat fibrosis of the heart: Focus on HDACs. Journal of Molecular and Cellular Cardiology, 2014, 70, 100-107.	1.9	72
68	HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H252-H258.	3.2	97
69	Class I HDAC inhibition stimulates cardiac protein SUMOylation through a post-translational mechanism. Cellular Signalling, 2014, 26, 2912-2920.	3.6	21
70	BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2013, 63, 175-179.	1.9	154
71	Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9806-9811.	7.1	107
72	Selective Class I Histone Deacetylase Inhibition Suppresses Hypoxia-Induced Cardiopulmonary Remodeling Through an Antiproliferative Mechanism. Circulation Research, 2012, 110, 739-748.	4.5	152

#	Article	IF	CITATIONS
73	Therapeutic Potential for HDAC Inhibitors in the Heart. Annual Review of Pharmacology and Toxicology, 2012, 52, 303-319.	9.4	215
74	The Biology and Therapeutic Implications of HDACs in the Heart. Handbook of Experimental Pharmacology, 2011, 206, 57-78.	1.8	34
75	Isoform-selective HDAC inhibitors: Closing in on translational medicine for the heart. Journal of Molecular and Cellular Cardiology, 2011, 51, 491-496.	1.9	88
76	Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. Journal of Molecular and Cellular Cardiology, 2011, 51, 41-50.	1.9	101
77	Targeting Inflammation in Heart Failure with Histone Deacetylase Inhibitors. Molecular Medicine, 2011, 17, 434-441.	4.4	85
78	A high-performance liquid chromatography assay for quantification of cardiac myosin heavy chain isoform protein expression. Analytical Biochemistry, 2011, 408, 132-135.	2.4	8
79	Protein kinase Câ€related kinase targets nuclear localization signals in a subset of class IIa histone deacetylases. FEBS Letters, 2010, 584, 1103-1110.	2.8	39
80	Derepression of pathological cardiac genes by members of the CaM kinase superfamily. Cardiovascular Research, 2007, 73, 667-677.	3.8	105
81	Regulation of Cardiac Stress Signaling by Protein Kinase D1. Molecular and Cellular Biology, 2006, 26, 3875-3888.	2.3	147
82	Histone Deacetylases 5 and 9 Govern Responsiveness of the Heart to a Subset of Stress Signals and Play Redundant Roles in Heart Development. Molecular and Cellular Biology, 2004, 24, 8467-8476.	2.3	548
83	Dose-dependent Blockade to Cardiomyocyte Hypertrophy by Histone Deacetylase Inhibitors. Journal of Biological Chemistry, 2003, 278, 28930-28937.	3.4	241
84	Class II Histone Deacetylases Act as Signal-Responsive Repressors of Cardiac Hypertrophy. Cell, 2002, 110, 479-488.	28.9	878