Heang-Ping Chan

List of Publications by Citations

Source: https://exaly.com/author-pdf/1330380/heang-ping-chan-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 356
 10,151
 58
 88

 papers
 citations
 h-index
 g-index

 430
 11,829
 5.6
 5.88

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
356	Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. <i>IEEE Transactions on Medical Imaging</i> , 1996 , 15, 598-610	11.7	283
355	Improvement in radiologistsSdetection of clustered microcalcifications on mammograms. The potential of computer-aided diagnosis. <i>Investigative Radiology</i> , 1990 , 25, 1102-10	10.1	255
354	Improvement of radiologistsScharacterization of mammographic masses by using computer-aided diagnosis: an ROC study. <i>Radiology</i> , 1999 , 212, 817-27	20.5	220
353	Image feature analysis and computer-aided diagnosis in digital radiography. I. Automated detection of microcalcifications in mammography. <i>Medical Physics</i> , 1987 , 14, 538-48	4.4	209
352	Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system. <i>Medical Physics</i> , 2002 , 29, 2552-8	4.4	207
351	Anniversary paper: History and status of CAD and quantitative image analysis: the role of Medical Physics and AAPM. <i>Medical Physics</i> , 2008 , 35, 5799-820	4.4	186
350	A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis. <i>Medical Physics</i> , 2006 , 33, 3781-95	4.4	186
349	Artificial convolution neural network for medical image pattern recognition. <i>Neural Networks</i> , 1995 , 8, 1201-1214	9.1	185
348	Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. <i>Medical Physics</i> , 2016 , 43, 6654	4.4	170
347	Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space. <i>Physics in Medicine and Biology</i> , 1995 , 40, 857-76	3.8	167
346	Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis. <i>Medical Physics</i> , 1998 , 25, 516-26	4.4	156
345	Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. <i>Medical Physics</i> , 2006 , 33, 2323-37	4.4	148
344	Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets. <i>Medical Physics</i> , 2016 , 43, 1882	4.4	147
343	Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces. <i>Medical Physics</i> , 1998 , 25, 2007-19	4.4	141
342	Improvement of mammographic mass characterization using spiculation meausures and morphological features. <i>Medical Physics</i> , 2001 , 28, 1455-65	4.4	140
341	Computer-aided detection of mammographic microcalcifications: pattern recognition with an artificial neural network. <i>Medical Physics</i> , 1995 , 22, 1555-67	4.4	140
340	An adaptive density-weighted contrast enhancement filter for mammographic breast mass detection. <i>IEEE Transactions on Medical Imaging</i> , 1996 , 15, 59-67	11.7	138

(2019-2001)

339	Computerized image analysis: estimation of breast density on mammograms. <i>Medical Physics</i> , 2001 , 28, 1056-69	4.4	123
338	Digital breast tomosynthesis is comparable to mammographic spot views for mass characterization. <i>Radiology</i> , 2012 , 262, 61-8	20.5	121
337	Computer-aided characterization of mammographic masses: accuracy of mass segmentation and its effects on characterization. <i>IEEE Transactions on Medical Imaging</i> , 2001 , 20, 1275-84	11.7	121
336	Classifier design for computer-aided diagnosis: effects of finite sample size on the mean performance of classical and neural network classifiers. <i>Medical Physics</i> , 1999 , 26, 2654-68	4.4	119
335	Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. <i>Medical Physics</i> , 2009 , 36, 3086-98	4.4	107
334	Mammographic density measured with quantitative computer-aided method: comparison with radiologistsSestimates and BI-RADS categories. <i>Radiology</i> , 2006 , 240, 656-65	20.5	105
333	Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. <i>Radiology</i> , 2007 , 242, 716-24	20.5	104
332	Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms. <i>Physics in Medicine and Biology</i> , 2017 , 62, 8894-8908	3.8	101
331	Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network. <i>Physics in Medicine and Biology</i> , 1997 , 42, 549-67	3.8	101
330	Feature selection and classifier performance in computer-aided diagnosis: the effect of finite sample size. <i>Medical Physics</i> , 2000 , 27, 1509-22	4.4	96
329	Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images. <i>Medical Physics</i> , 2004 , 31, 933-42	4.4	95
328	Computer-aided detection system for breast masses on digital tomosynthesis mammograms: preliminary experience. <i>Radiology</i> , 2005 , 237, 1075-80	20.5	94
327	Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning. <i>Scientific Reports</i> , 2017 , 7, 8738	4.9	91
326	Sensitivity of noncommercial computer-aided detection system for mammographic breast cancer detection: pilot clinical trial. <i>Radiology</i> , 2004 , 231, 208-14	20.5	91
325	Digital Mammography. <i>Investigative Radiology</i> , 1987 , 22, 581-589	10.1	91
324	Image feature selection by a genetic algorithm: application to classification of mass and normal breast tissue. <i>Medical Physics</i> , 1996 , 23, 1671-84	4.4	86
323	Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk. <i>Nature Communications</i> , 2014 , 5, 5303	17.4	84
322	Breast Cancer Diagnosis in Digital Breast Tomosynthesis: Effects of Training Sample Size on Multi-Stage Transfer Learning Using Deep Neural Nets. <i>IEEE Transactions on Medical Imaging</i> , 2019 , 38, 686-696	11.7	84

321	Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification. <i>Medical Physics</i> , 1996 , 23, 1685-96	4.4	83
320	Deep Learning in Medical Image Analysis. <i>Advances in Experimental Medicine and Biology</i> , 2020 , 1213, 3-21	3.6	80
319	Characterization of mammographic masses based on level set segmentation with new image features and patient information. <i>Medical Physics</i> , 2008 , 35, 280-90	4.4	79
318	Classification of mass and normal breast tissue on digital mammograms: multiresolution texture analysis. <i>Medical Physics</i> , 1995 , 22, 1501-13	4.4	79
317	Improvement of computerized mass detection on mammograms: fusion of two-view information. <i>Medical Physics</i> , 2002 , 29, 238-47	4.4	78
316	Combined adaptive enhancement and region-growing segmentation of breast masses on digitized mammograms. <i>Medical Physics</i> , 1999 , 26, 1642-54	4.4	78
315	Evaluation of the transmitted exposure through lead equivalent aprons used in a radiology department, including the contribution from backscatter. <i>Medical Physics</i> , 2003 , 30, 1033-8	4.4	77
314	Classifier performance prediction for computer-aided diagnosis using a limited dataset. <i>Medical Physics</i> , 2008 , 35, 1559-70	4.4	76
313	The estimation of occupational effective dose in diagnostic radiology with two dosimeters. <i>Health Physics</i> , 1994 , 67, 611-5	2.3	75
312	Effect of CAD on radiologistsSdetection of lung nodules on thoracic CT scans: analysis of an observer performance study by nodule size. <i>Academic Radiology</i> , 2009 , 16, 1518-30	4.3	74
311	Computer-aided detection of breast masses on full field digital mammograms. <i>Medical Physics</i> , 2005 , 32, 2827-38	4.4	74
310	Improvement in radiologistsScharacterization of malignant and benign breast masses on serial mammograms with computer-aided diagnosis: an ROC study. <i>Radiology</i> , 2004 , 233, 255-65	20.5	73
309	Physical characteristics of scattered radiation in diagnostic radiology: Monte Carlo simulation studies. <i>Medical Physics</i> , 1985 , 12, 152-65	4.4	69
308	Evaluation of computer-aided detection and diagnosis systems. <i>Medical Physics</i> , 2013 , 40, 087001	4.4	68
307	Computer-aided detection of masses in digital tomosynthesis mammography: comparison of three approaches. <i>Medical Physics</i> , 2008 , 35, 4087-95	4.4	67
306	Breast cancer detection: evaluation of a mass-detection algorithm for computer-aided diagnosis experience in 263 patients. <i>Radiology</i> , 2002 , 224, 217-24	20.5	65
305	Assessment methodologies and statistical issues for computer-aided diagnosis of lung nodules in computed tomography: contemporary research topics relevant to the lung image database consortium. <i>Academic Radiology</i> , 2004 , 11, 462-75	4.3	63
304	Computer-aided detection of lung nodules: false positive reduction using a 3D gradient field method and 3D ellipsoid fitting. <i>Medical Physics</i> , 2005 , 32, 2443-54	4.4	62

(2008-1983)

303	Energy and angular dependence of x-ray absorption and its effect on radiographic response in screenfilm systems. <i>Physics in Medicine and Biology</i> , 1983 , 28, 565-79	3.8	62
302	Computer aided detection of clusters of microcalcifications on full field digital mammograms. <i>Medical Physics</i> , 2006 , 33, 2975-88	4.4	61
301	Association of computerized mammographic parenchymal pattern measure with breast cancer risk: a pilot case-control study. <i>Radiology</i> , 2011 , 260, 42-9	20.5	60
300	Computer-aided diagnosis of lung cancer and pulmonary embolism in computed tomography-a review. <i>Academic Radiology</i> , 2008 , 15, 535-55	4.3	60
299	Digitization requirements in mammography: effects on computer-aided detection of microcalcifications. <i>Medical Physics</i> , 1994 , 21, 1203-11	4.4	59
298	Computerized characterization of breast masses on three-dimensional ultrasound volumes. <i>Medical Physics</i> , 2004 , 31, 744-54	4.4	56
297	Classification of malignant and benign masses based on hybrid ART2LDA approach. <i>IEEE Transactions on Medical Imaging</i> , 1999 , 18, 1178-87	11.7	56
296	Urinary bladder cancer staging in CT urography using machine learning. <i>Medical Physics</i> , 2017 , 44, 5814	-5 8 23	53
295	Optimal neural network architecture selection: improvement in computerized detection of microcalcifications. <i>Academic Radiology</i> , 2002 , 9, 420-9	4.3	52
294	Automatic multiscale enhancement and segmentation of pulmonary vessels in CT pulmonary angiography images for CAD applications. <i>Medical Physics</i> , 2007 , 34, 4567-77	4.4	51
293	Analysis of temporal changes of mammographic features: computer-aided classification of malignant and benign breast masses. <i>Medical Physics</i> , 2001 , 28, 2309-17	4.4	51
292	Combination of digital mammography with semi-automated 3D breast ultrasound. <i>Technology in Cancer Research and Treatment</i> , 2004 , 3, 325-34	2.7	50
291	Preliminary investigation of computer-aided detection of pulmonary embolism in three-dimensional computed tomography pulmonary angiography images. <i>Academic Radiology</i> , 2005 , 12, 782-92	4.3	47
290	Bladder Cancer Segmentation in CT for Treatment Response Assessment: Application of Deep-Learning Convolution Neural Network-A Pilot Study. <i>Tomography</i> , 2016 , 2, 421-429	3.1	46
289	Novel Associations between Common Breast Cancer Susceptibility Variants and Risk-Predicting Mammographic Density Measures. <i>Cancer Research</i> , 2015 , 75, 2457-67	10.1	45
288	Effect of finite sample size on feature selection and classification: a simulation study. <i>Medical Physics</i> , 2010 , 37, 907-20	4.4	45
287	Studies of x-ray energy absorption and quantum noise properties of x-ray screens by use of Monte Carlo simulation. <i>Medical Physics</i> , 1984 , 11, 37-46	4.4	45
286	Effect of CT scanning parameters on volumetric measurements of pulmonary nodules by 3D active contour segmentation: a phantom study. <i>Physics in Medicine and Biology</i> , 2008 , 53, 1295-312	3.8	44

285	Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. <i>Physics in Medicine and Biology</i> , 2018 , 63, 095005	3.8	43
284	False-positive reduction technique for detection of masses on digital mammograms: global and local multiresolution texture analysis. <i>Medical Physics</i> , 1997 , 24, 903-14	4.4	43
283	Investigation of the performance of antiscatter grids: Monte Carlo simulation studies. <i>Physics in Medicine and Biology</i> , 1982 , 27, 785-803	3.8	43
282	Computer-aided diagnosis in mammography: classification of mass and normal tissue by texture analysis. <i>Physics in Medicine and Biology</i> , 1994 , 39, 2273-88	3.8	42
281	Design of a high-sensitivity classifier based on a genetic algorithm: application to computer-aided diagnosis. <i>Physics in Medicine and Biology</i> , 1998 , 43, 2853-71	3.8	41
280	Computer-aided diagnosis in chest radiology. <i>Journal of Thoracic Imaging</i> , 1990 , 5, 67-76	5.6	41
279	Digital breast tomosynthesis: observer performance of clustered microcalcification detection on breast phantom images acquired with an experimental system using variable scan angles, angular increments, and number of projection views. <i>Radiology</i> , 2014 , 273, 675-85	20.5	38
278	Automated coronary artery tree extraction in coronary CT angiography using a multiscale enhancement and dynamic balloon tracking (MSCAR-DBT) method. <i>Computerized Medical Imaging and Graphics</i> , 2012 , 36, 1-10	7.6	38
277	Computer-aided detection of clustered microcalcifications in digital breast tomosynthesis: a 3D approach. <i>Medical Physics</i> , 2012 , 39, 28-39	4.4	38
276	Computer-aided detection of breast masses on mammograms: dual system approach with two-view analysis. <i>Medical Physics</i> , 2009 , 36, 4451-60	4.4	38
275	Bilateral analysis based false positive reduction for computer-aided mass detection. <i>Medical Physics</i> , 2007 , 34, 3334-44	4.4	37
274	Computer-aided diagnosis in the era of deep learning. <i>Medical Physics</i> , 2020 , 47, e218-e227	4.4	36
273	Monte Carlo simulation studies of detectors used in the measurement of diagnostic x-ray spectra. <i>Medical Physics</i> , 1980 , 7, 627-35	4.4	36
272	Breast masses: computer-aided diagnosis with serial mammograms. <i>Radiology</i> , 2006 , 240, 343-56	20.5	35
271	Studies of performance of antiscatter grids in digital radiography: effect on signal-to-noise ratio. <i>Medical Physics</i> , 1990 , 17, 655-64	4.4	35
270	Automated volume analysis of head and neck lesions on CT scans using 3D level set segmentation. <i>Medical Physics</i> , 2007 , 34, 4399-408	4.4	34
269	CAD and AI for breast cancer-recent development and challenges. <i>British Journal of Radiology</i> , 2020 , 93, 20190580	3.4	34
268	Digital breast tomosynthesis: studies of the effects of acquisition geometry on contrast-to-noise ratio and observer preference of low-contrast objects in breast phantom images. <i>Physics in Medicine and Riology</i> 2014 , 59, 5983, 902	3.8	33

(1998-2006)

Accuracy of the CT numbers of simulated lung nodules imaged with multi-detector CT scanners. <i>Medical Physics</i> , 2006 , 33, 3006-17	4.4	33
Advances in computer-aided diagnosis for breast cancer. <i>Current Opinion in Obstetrics and Gynecology</i> , 2006 , 18, 64-70	2.4	33
Comparison of similarity measures for the task of template matching of masses on serial mammograms. <i>Medical Physics</i> , 2005 , 32, 515-29	4.4	33
Analysis of uncertainties in estimates of components of variance in multivariate ROC analysis. <i>Academic Radiology</i> , 2001 , 8, 616-22	4.3	33
Standardization in Quantitative Imaging: A Multicenter Comparison of Radiomic Features from Different Software Packages on Digital Reference Objects and Patient Data Sets. <i>Tomography</i> , 2020 , 6, 118-128	3.1	32
A new automated method for the segmentation and characterization of breast masses on ultrasound images. <i>Medical Physics</i> , 2009 , 36, 1553-65	4.4	31
Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning. <i>Physics in Medicine and Biology</i> , 2018 , 63, 025005	3.8	31
Automated iterative neutrosophic lung segmentation for image analysis in thoracic computed tomography. <i>Medical Physics</i> , 2013 , 40, 081912	4.4	30
Computer-aided diagnosis of lung nodules on CT scans: ROC study of its effect on radiologistsS performance. <i>Academic Radiology</i> , 2010 , 17, 323-32	4.3	30
Selective-diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis reconstruction. <i>Medical Physics</i> , 2010 , 37, 6003-14	4.4	30
A regional registration technique for automated interval change analysis of breast lesions on mammograms. <i>Medical Physics</i> , 1999 , 26, 2669-79	4.4	30
Adverse effects of increased body weight on quantitative measures of mammographic image quality. <i>American Journal of Roentgenology</i> , 2000 , 175, 805-10	5.4	29
Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions. <i>Medical Physics</i> , 2011 , 38, 5703-12	4.4	28
Basic imaging properties of a large image intensifier-TV digital chest radiographic system. <i>Investigative Radiology</i> , 1987 , 22, 328-35	10.1	28
Computerized nipple identification for multiple image analysis in computer-aided diagnosis. <i>Medical Physics</i> , 2004 , 31, 2871-82	4.4	27
Performance of antiscatter grids in diagnostic radiology: experimental measurements and Monte Carlo simulation studies. <i>Medical Physics</i> , 1985 , 12, 449-54	4.4	27
Digital breast tomosynthesis: computer-aided detection of clustered microcalcifications on planar projection images. <i>Physics in Medicine and Biology</i> , 2014 , 59, 7457-77	3.8	26
Classification of compressed breast shapes for the design of equalization filters in x-ray mammography. <i>Medical Physics</i> , 1998 , 25, 937-48	4.4	26
	Advances in computer-aided diagnosis for breast cancer. Current Opinion in Obstetrics and Gynecology, 2006, 18, 64-70 Comparison of similarity measures for the task of template matching of masses on serial mammograms. Medical Physics, 2005, 32, 515-29 Analysis of uncertainties in estimates of components of variance in multivariate ROC analysis. Academic Radiology, 2001, 8, 616-22 Standardization in Quantitative Imaging: A Multicenter Comparison of Radiomic Features from Different Software Packages on Digital Reference Objects and Patient Data Sets. Tomography, 2020, 6, 118-128 A new automated method for the segmentation and characterization of breast masses on ultrasound images. Medical Physics, 2009, 36, 1553-65 Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning. Physics in Medicine and Biology, 2018, 63, 025005 Automated iterative neutrosophic lung segmentation for image analysis in thoracic computed tomography. Medical Physics, 2013, 40, 081912 Computer-aided diagnosis of lung nodules on CT scans: ROC study of its effect on radiologistsS performance. Academic Radiology, 2010, 17, 323-32 Selective-diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis reconstruction. Medical Physics, 2010, 37, 6003-14 A regional registration technique for automated interval change analysis of breast lesions on mammograms. Medical Physics, 1999, 26, 2669-79 Adverse effects of increased body weight on quantitative measures of mammographic image quality. American Journal of Roentgenology, 2000, 175, 805-10 Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions. Medical Physics, 2011, 38, 5703-12 Basic imaging properties of a large image intensifier-TV digital chest radiographic system. Investigative Radiology, 1987, 22, 328-35 Computer-aided diagnosis. Medical Physics, 1985, 12, 449-54 Digital breast tomosynthesis: computer-aided detection of cluste	Advances in computer-aided diagnosis for breast cancer. Current Opinion in Obstetrics and Cynecology, 2006, 18, 64-70 Comparison of similarity measures for the task of template matching of masses on serial mammograms. Medical Physics, 2005, 32, 515-29 44 Analysis of uncertainties in estimates of components of variance in multivariate ROC analysis. Academic Radiology, 2001, 8, 616-22 Standardization in Quantitative Imaging: A Multicenter Comparison of Radiomic Features from Different Software Packages on Digital Reference Objects and Patient Data Sets. Tomography, 2020, 6, 118-128 A new automated method for the segmentation and characterization of breast masses on ultrasound images. Medical Physics, 2009, 36, 1553-65 Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning. Physics in Medicine and Biology, 2018, 63, 025005 Automated iterative neutrosophic lung segmentation for image analysis in thoracic computed tomography. Medical Physics, 2013, 40, 081912 Computer-aided diagnosis of lung nodules on CT scans: ROC study of its effect on radiologistsS performance. Academic Radiology, 2010, 17, 323-32 Selective-diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis reconstruction. Medical Physics, 2010, 37, 6003-14 A regional registration technique for automated interval change analysis of breast lesions on mammograms. Medical Physics, 1999, 26, 2669-79 Adverse effects of increased body weight on quantitative measures of mammographic image quality. American Journal of Roentgenology, 2000, 175, 805-10 Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions. Medical Physics, 2011, 38, 5703-12 Basic imaging properties of a large image intensifier-TV digital chest radiographic system. Investigative Radiology, 1987, 22, 328-35 Computerized nipple identification for multiple image analysis in computer-aided diagnosis. Medical Physics, 2011, 38, 57

249	Joint two-view information for computerized detection of microcalcifications on mammograms. <i>Medical Physics</i> , 2006 , 33, 2574-85	4.4	26
248	Automated registration of breast lesions in temporal pairs of mammograms for interval change analysislocal affine transformation for improved localization. <i>Medical Physics</i> , 2001 , 28, 1070-9	4.4	25
247	Image compression in digital mammography: effects on computerized detection of subtle microcalcifications. <i>Medical Physics</i> , 1996 , 23, 1325-36	4.4	25
246	Multi-modality CADx: ROC study of the effect on radiologistsSaccuracy in characterizing breast masses on mammograms and 3D ultrasound images. <i>Academic Radiology</i> , 2009 , 16, 810-8	4.3	24
245	Dual system approach to computer-aided detection of breast masses on mammograms. <i>Medical Physics</i> , 2006 , 33, 4157-68	4.4	24
244	Similarity evaluation in a content-based image retrieval (CBIR) CADx system for characterization of breast masses on ultrasound images. <i>Medical Physics</i> , 2011 , 38, 1820-31	4.4	23
243	U-Net based deep learning bladder segmentation in CT urography. <i>Medical Physics</i> , 2019 , 46, 1752-1765	5 4.4	22
242	Aromatase inhibitor-induced modulation of breast density: clinical and genetic effects. <i>British Journal of Cancer</i> , 2013 , 109, 2331-9	8.7	22
241	Characterization of masses in digital breast tomosynthesis: comparison of machine learning in projection views and reconstructed slices. <i>Medical Physics</i> , 2010 , 37, 3576-86	4.4	22
240	Computer-aided detection systems for breast masses: comparison of performances on full-field digital mammograms and digitized screen-film mammograms. <i>Academic Radiology</i> , 2007 , 14, 659-69	4.3	22
239	Effects of x-ray beam equalization on mammographic imaging. <i>Medical Physics</i> , 1990 , 17, 242-9	4.4	22
238	Computer-aided detection system for clustered microcalcifications in digital breast tomosynthesis using joint information from volumetric and planar projection images. <i>Physics in Medicine and Biology</i> , 2015 , 60, 8457-79	3.8	21
237	Classifier performance estimation under the constraint of a finite sample size: resampling schemes applied to neural network classifiers. <i>Neural Networks</i> , 2008 , 21, 476-83	9.1	21
236	Pulmonary nodule registration in serial CT scans based on rib anatomy and nodule template matching. <i>Medical Physics</i> , 2007 , 34, 1336-47	4.4	21
235	Selection of an optimal neural network architecture for computer-aided detection of microcalcificationscomparison of automated optimization techniques. <i>Medical Physics</i> , 2001 , 28, 1937-	-48 ⁴	21
234	Digital mammography: observer performance study of the effects of pixel size on the characterization of malignant and benign microcalcifications. <i>Academic Radiology</i> , 2001 , 8, 454-66	4.3	21
233	Diagnostic Accuracy of CT for Prediction of Bladder Cancer Treatment Response with and without Computerized Decision Support. <i>Academic Radiology</i> , 2019 , 26, 1137-1145	4.3	21
232	Computer-aided detection of breast masses: four-view strategy for screening mammography. Medical Physics, 2011, 38, 1867-76	4.4	20

231	Artifact reduction methods for truncated projections in iterative breast tomosynthesis reconstruction. <i>Journal of Computer Assisted Tomography</i> , 2009 , 33, 426-35	2.2	20
230	Phototimer setup for CR imaging. <i>Medical Physics</i> , 2000 , 27, 2652-8	4.4	20
229	Auto-initialized cascaded level set (AI-CALS) segmentation of bladder lesions on multidetector row CT urography. <i>Academic Radiology</i> , 2013 , 20, 148-55	4.3	19
228	Computer-aided detection of clustered microcalcifications in multiscale bilateral filtering regularized reconstructed digital breast tomosynthesis volume. <i>Medical Physics</i> , 2014 , 41, 021901	4.4	19
227	Application of boundary detection information in breast tomosynthesis reconstruction. <i>Medical Physics</i> , 2007 , 34, 3603-13	4.4	19
226	Investigation of basic imaging properties in digital radiography. 5. Characteristic curves of II-TV digital systems. <i>Medical Physics</i> , 1986 , 13, 13-8	4.4	19
225	Automated Tracking Of The Vascular Tree In DSA Images Using A Double-Square-Box Region-Of-Search Algorithm 1986 , 0626, 326		19
224	Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis 2016 ,		19
223	Deep Learning Approach for Assessment of Bladder Cancer Treatment Response. <i>Tomography</i> , 2019 , 5, 201-208	3.1	18
222	Treatment response assessment of breast masses on dynamic contrast-enhanced magnetic resonance scans using fuzzy c-means clustering and level set segmentation. <i>Medical Physics</i> , 2009 , 36, 5052-63	4.4	18
221	Computer-aided detection system for clustered microcalcifications: comparison of performance on full-field digital mammograms and digitized screen-film mammograms. <i>Physics in Medicine and Biology</i> , 2007 , 52, 981-1000	3.8	18
220	Investigation of basic imaging properties in digital radiography. 8. Detection of simulated low-contrast objects in digital subtraction angiographic images. <i>Medical Physics</i> , 1986 , 13, 304-11	4.4	18
219	Radiation dose in diagnostic radiology: Monte Carlo simulation studies. <i>Medical Physics</i> , 1984 , 11, 480-90	04.4	18
218	Breast mass characterization using 3-dimensional automated ultrasound as an adjunct to digital breast tomosynthesis: a pilot study. <i>Journal of Ultrasound in Medicine</i> , 2013 , 32, 93-104	2.9	18
217	Quality assurance and training procedures for computer-aided detection and diagnosis systems in clinical use. <i>Medical Physics</i> , 2013 , 40, 077001	4.4	17
216	ROC study of the effect of stereoscopic imaging on assessment of breast lesions. <i>Medical Physics</i> , 2005 , 32, 1001-9	4.4	17
215	An Empirical Investigation Of Variability In Contrast-Detail Diagram Measurements 1983 , 0419, 68		17
214	Finite-sample effects and resampling plans: applications to linear classifiers in computer-aided diagnosis 1997 , 3034, 467		16

213	Quasi-continuous and discrete confidence rating scales for observer performance studies: Effects on ROC analysis. <i>Academic Radiology</i> , 2007 , 14, 38-48	4.3	16
212	Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis. <i>Physics in Medicine and Biology</i> , 2016 , 61, 7092-7112	3.8	16
211	High-speed large-angle mammography tomosynthesis system 2006,		15
210	Automated tracking and computer reproduction of vessels in DSA images. <i>Investigative Radiology</i> , 1990 , 25, 1069-75	10.1	15
209	Characterization of Breast Masses in Digital Breast Tomosynthesis and Digital Mammograms: An Observer Performance Study. <i>Academic Radiology</i> , 2017 , 24, 1372-1379	4.3	14
208	Computerized detection of noncalcified plaques in coronary CT angiography: evaluation of topological soft gradient prescreening method and luminal analysis. <i>Medical Physics</i> , 2014 , 41, 081901	4.4	14
207	Dynamic multiple thresholding breast boundary detection algorithm for mammograms. <i>Medical Physics</i> , 2010 , 37, 391-401	4.4	14
206	Computerized image analysis: texture-field orientation method for pectoral muscle identification on MLO-view mammograms. <i>Medical Physics</i> , 2010 , 37, 2289-99	4.4	14
205	Mammographic breast densityevidence for genetic correlations with established breast cancer risk factors. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2008 , 17, 3509-16	4	14
204	Computerized detection of pulmonary embolism in 3D computed tomographic (CT) images: vessel tracking and segmentation techniques 2003 ,		14
203	Automated segmentation of regions of interest on hand radiographs. <i>Medical Physics</i> , 1994 , 21, 1293-3	o q .4	14
202	Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis. <i>Medical Physics</i> , 2015 , 42, 182-95	4.4	13
201	Computer-aided detection of pulmonary embolism in computed tomographic pulmonary angiography (CTPA): performance evaluation with independent data sets. <i>Medical Physics</i> , 2009 , 36, 33	8 4 -96	13
200	Performance analysis of three-class classifiers: properties of a 3-D ROC surface and the normalized volume under the surface for the ideal observer. <i>IEEE Transactions on Medical Imaging</i> , 2008 , 27, 215-27	, 11.7	13
199	Design of three-class classifiers in computer-aided diagnosis: Monte Carlo simulation study 2003,		13
198	Stereomammography: evaluation of depth perception using a virtual 3D cursor. <i>Medical Physics</i> , 2000 , 27, 1305-10	4.4	13
197	Some properties of photon scattering in water phantoms in diagnostic radiology. <i>Medical Physics</i> , 1986 , 13, 824-30	4.4	13
196	CT urography: segmentation of urinary bladder using CLASS with local contour refinement. <i>Physics in Medicine and Biology</i> , 2014 , 59, 2767-85	3.8	12

195	Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis. <i>Medical Physics</i> , 2014 , 41, 041913	4.4	12
194	Dynamic digital subtraction evaluation of regional pulmonary ventilation with nonradioactive xenon. <i>Investigative Radiology</i> , 1990 , 25, 728-35	10.1	12
193	Experimental and theoretical energy and angular dependencies of scattered radiation in the mammography energy range. <i>Medical Physics</i> , 1983 , 10, 664-8	4.4	12
192	Generalization error analysis for deep convolutional neural network with transfer learning in breast cancer diagnosis. <i>Physics in Medicine and Biology</i> , 2020 , 65, 105002	3.8	11
191	Semi-automated pulmonary nodule interval segmentation using the NLST data. <i>Medical Physics</i> , 2018 , 45, 1093-1107	4.4	11
190	Detector Blur and Correlated Noise Modeling for Digital Breast Tomosynthesis Reconstruction. <i>IEEE Transactions on Medical Imaging</i> , 2018 , 37, 116-127	11.7	11
189	Treatment response assessment of head and neck cancers on CT using computerized volume analysis. <i>American Journal of Neuroradiology</i> , 2010 , 31, 1744-51	4.4	11
188	Quantitative CT of lung nodules: dependence of calibration on patient body size, anatomic region, and calibration nodule size for single- and dual-energy techniques. <i>Medical Physics</i> , 2009 , 36, 3107-21	4.4	11
187	On the repeated use of databases for testing incremental improvement of computer-aided detection schemes. <i>Academic Radiology</i> , 2004 , 11, 103-5	4.3	11
186	The effects of stereo shift angle, geometric magnification and display zoom on depth measurements in digital stereomammography. <i>Medical Physics</i> , 2002 , 29, 2725-34	4.4	11
185	Exposure equalization technique in mammography. Investigative Radiology, 1989, 24, 154-7	10.1	11
184	Head and neck cancers on CT: preliminary study of treatment response assessment based on computerized volume analysis. <i>American Journal of Roentgenology</i> , 2010 , 194, 1083-9	5.4	10
183	The effect of nodule segmentation on the accuracy of computerized lung nodule detection on CT scans: comparison on a data set annotated by multiple radiologists 2007 ,		10
182	Computerized characterization of breast masses using three-dimensional ultrasound images 1998,		10
181	Physical characteristics of scattered radiation and the performance of antiscatter grids in diagnostic radiology. <i>Radiographics</i> , 1982 , 2, 378-406	5.4	10
180	Explainable AI for medical imaging: deep-learning CNN ensemble for classification of estrogen receptor status from breast MRI 2020 ,		10
179	Urinary bladder segmentation in CT urography (CTU) using CLASS. <i>Medical Physics</i> , 2013 , 40, 111906	4.4	9
178	Classification of masses on mammograms using rubber-band straightening transform and feature analysis 1996 , 2710, 44		9

177	Tomosynthesis reconstruction using the simultaneous algebraic reconstruction technique (SART) on breast phantom data 2006 , 6142, 1391		9
176	Effect of CAD on radiologistsSdetection of lung nodules on thoracic CT scans: observer performance study 2007 ,		9
175	A diffusion-based truncated projection artifact reduction method for iterative digital breast tomosynthesis reconstruction. <i>Physics in Medicine and Biology</i> , 2013 , 58, 569-87	3.8	8
174	Automated regional registration and characterization of corresponding microcalcification clusters on temporal pairs of mammograms for interval change analysis. <i>Medical Physics</i> , 2008 , 35, 5340-50	4.4	8
173	Determination of radiographic screen-film system characteristic curve and its gradient by use of a curve-smoothing technique. <i>Medical Physics</i> , 1978 , 5, 443-7	4.4	8
172	Detection of urinary bladder mass in CT urography with SPAN. <i>Medical Physics</i> , 2015 , 42, 4271-84	4.4	7
171	Coronary CT angiography (cCTA): automated registration of coronary arterial trees from multiple phases. <i>Physics in Medicine and Biology</i> , 2014 , 59, 4661-80	3.8	7
170	Computerized analysis of coronary artery disease: performance evaluation of segmentation and tracking of coronary arteries in CT angiograms. <i>Medical Physics</i> , 2014 , 41, 081912	4.4	7
169	Adaptive diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis (DBT) reconstruction 2011 ,		7
168	Automated detection of breast vascular calcification on full-field digital mammograms 2008,		7
167	Effects of magnification and zooming on depth perception in digital stereomammography: an observer performance study. <i>Physics in Medicine and Biology</i> , 2003 , 48, 3721-34	3.8	7
166	Evaluation of an automated computer-aided diagnosis system for the detection of masses on prior mammograms 2000 , 3979, 967		7
165	Computerized detection and classification of microcalcifications on mammograms 1995,		7
164	Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision. <i>Medical Physics</i> , 2019 , 46, 2103-2114	4.4	6
163	Multiscale regularized reconstruction for enhancing microcalcification in digital breast tomosynthesis 2012 ,		6
162	Effects of sample size on classifier design: quadratic and neural network classifiers 1997,		6
161	Digital tomosynthesis mammography: intra- and interplane artifact reduction for high-contrast objects on reconstructed slices using a priori 3D geometrical information 2007 ,		6
160	Computer-aided detection of lung nodules: false positive reduction using a 3D gradient field method 2004 ,		6

159	Recognition of lesion correspondence on two mammographic views: a new method of false-positive reduction for computerized mass detection 2001 ,		6
158	Components of variance in ROC analysis of CADx classifier performance 1998 , 3338, 859		6
157	Digital Image Processing: Optimal Spatial Filter For Maximization Of The Perceived Snr Based On A Statistical Decision Theory Model For The Human Observer 1985 , 0535, 2		6
156	Multiresolution texture analysis for classification of mass and normal breast tissue on digital mammograms 1995 ,		6
155	Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis 2018 ,		6
154	Intraobserver Variability in Bladder Cancer Treatment Response Assessment With and Without Computerized Decision Support. <i>Tomography</i> , 2020 , 6, 194-202	3.1	6
153	Investigation of Different PV Distributions in Digital Breast Tomosynthesis (DBT) Mammography. <i>Lecture Notes in Computer Science</i> , 2008 , 593-600	0.9	6
152	Deep-learning convolutional neural network: Inner and outer bladder wall segmentation in CT urography. <i>Medical Physics</i> , 2019 , 46, 634-648	4.4	6
151	Quantitative Analysis of MR Imaging to Assess Treatment Response for Patients with Multiple Myeloma by Using Dynamic Intensity Entropy Transformation: A Preliminary Study. <i>Radiology</i> , 2016 , 278, 449-57	20.5	5
150	Segmentation of inner and outer bladder wall using deep-learning convolutional neural network in CT urography 2017 ,		5
149	Treatment Response Assessment for Bladder Cancer on CT Based on Computerized Volume Analysis, World Health Organization Criteria, and RECIST. <i>American Journal of Roentgenology</i> , 2015 , 205, 348-52	5.4	5
148	Improving image quality for digital breast tomosynthesis: an automated detection and diffusion-based method for metal artifact reduction. <i>Physics in Medicine and Biology</i> , 2017 , 62, 7765-7783	3 .8	5
147	Computer aided detection of surgical retained foreign object for prevention. <i>Medical Physics</i> , 2015 , 42, 1213-22	4.4	5
146	Computer-aided detection of breast masses in digital breast tomosynthesis (DBT): improvement of false positive reduction by optimization of object segmentation 2011 ,		5
145	Automated segmentation of urinary bladder and detection of bladder lesions in multi-detector row CT urography 2009 ,		5
144	Computer-aided diagnosis for interval change analysis of lung nodule features in serial CT examinations 2007 ,		5
143	Computerized lung nodule detection on screening CT scans: performance on juxta-pleural and internal nodules 2006 ,		5
142	Performance analysis of 3-class classifiers: properties of the 3D ROC surface and the normalized volume under the surface 2006 , 6146, 87		5

141	Sample size and validation issues on the development of CAD systems. <i>International Congress Series</i> , 2004 , 1268, 872-877		5
140	False-positive reduction using Hessian features in computer-aided detection of pulmonary nodules on thoracic CT images 2005 ,		5
139	Improvement of mammographic lesion detection by fusion of information from different views 2001 ,		5
138	Regional mammogram registration technique for automated analysis of interval changes of breast lesions 1998 , 3338, 118		5
137	Design and evaluation of an external filter technique for exposure equalization in mammography. <i>Medical Physics</i> , 1999 , 26, 1655-69	4.4	5
136	Computer-aided diagnosis: detection and characterization of hyperparathyroidism in digital hand radiographs. <i>Medical Physics</i> , 1993 , 20, 983-92	4.4	5
135	Digital Characterization Of Clinical Mammographic Microcalcifications: Applications In Computer-Aided Detection 1988 , 0914, 591		5
134	Three-Dimensional Reproduction Of Coronary Vascular Trees Using The Double-Square-Box Method Of Tracking 1988 ,		5
133	Detection of Masses in Digital Breast Tomosynthesis Mammography: Effects of the Number of Projection Views and Dose. <i>Lecture Notes in Computer Science</i> , 2008 , 279-285	0.9	5
132	Mammography Tomosynthesis System for High Performance 3D Imaging. <i>Lecture Notes in Computer Science</i> , 2006 , 137-143	0.9	5
131	Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction. <i>Medical Physics</i> , 2017 , 44, 986-1001	4.4	4
130	Effect of source blur on digital breast tomosynthesis reconstruction. <i>Medical Physics</i> , 2019 , 46, 5572-55	9 <u>7</u> .4	4
129	A similarity study of content-based image retrieval system for breast cancer using decision tree. <i>Medical Physics</i> , 2013 , 40, 012901	4.4	4
128	Pulmonary vessel segmentation utilizing curved planar reformation and optimal path finding (CROP) in computed tomographic pulmonary angiography (CTPA) for CAD applications 2012 ,		4
127	Investigation of the line-pair pattern method for evaluating mammographic focal spot performance. <i>Medical Physics</i> , 1997 , 24, 11-5	4.4	4
126	Concordance of computer-extracted image features with BI-RADS descriptors for mammographic mass margin 2008 ,		4
125	Comparison of mammographic parenchymal patterns of normal subjects and breast cancer patients 2008 ,		4
124	Investigation of the Z-axis resolution of breast tomosynthesis mammography systems 2007 ,		4

123	Automatic pulmonary vessel segmentation in 3D computed tomographic pulmonary angiographic (CTPA) images 2006 ,		4
122	Computerized pectoral muscle identification on MLO-view mammograms for CAD applications 2005 ,		4
121	Computerized lung nodule detection on thoracic CT images: combined rule-based and statistical classifier for false-positive reduction 2001 ,		4
120	Effects of pixel size on classification of microcalcifications on digitized mammograms 1996,		4
119	Automated detection of breast masses on digital mammograms using adaptive density-weighted contrast-enhancement filtering 1995 ,		4
118	Contrast enhancement of noisy images by windowing: limitations due to the finite dynamic range of the display system. <i>Medical Physics</i> , 1989 , 16, 170-8	4.4	4
117	Computerized Detection and Classification of Malignant and Benign Microcalcifications on Full Field Digital Mammograms. <i>Lecture Notes in Computer Science</i> , 2008 , 336-342	0.9	4
116	Automated Registration of Volumes of Interest for a Combined X-Ray Tomosynthesis and Ultrasound Breast Imaging System. <i>Lecture Notes in Computer Science</i> , 2008 , 463-468	0.9	4
115	Digital breast tomosynthesis reconstruction using spatially weighted non-convex regularization 2016 ,		4
114	Synthesizing mammogram from digital breast tomosynthesis. <i>Physics in Medicine and Biology</i> , 2019 , 64, 045011	3.8	4
113	Prediction of Disease Free Survival in Laryngeal and Hypopharyngeal Cancers Using CT Perfusion and Radiomic Features: A Pilot Study. <i>Tomography</i> , 2021 , 7, 10-19	3.1	4
112	Computer-aided detection of retained surgical needles from postoperative radiographs. <i>Medical Physics</i> , 2017 , 44, 180-191	4.4	3
111	Detection of microcalcifications in breast tomosynthesis reconstructed with multiscale bilateral filtering regularization 2013 ,		3
110	BI-RADS guided mammographic mass retrieval 2011 ,		3
109	Segmentation of urinary bladder in CT urography (CTU) using CLASS 2012,		3
108	A computer-aided diagnosis system for prediction of the probability of malignancy of breast masses on ultrasound images 2009 ,		3
107	Characterization of masses on mammograms: significance of using the rubber band straightening transform 1997 ,		3
106	Classifier Performance Estimation Under the Constraint of a Finite Sample Size: Resampling Schemes Applied to Neural Network Classifiers. <i>Neural Networks (IJCNN), International Joint Conference on</i> , 2007 ,		3

105	A dynamic multiple thresholding method for automated breast boundary detection in digitized mammograms 2007 ,		3
104	Computer-aided detection of breast masses on full-field digital mammograms: false positive reduction using gradient field analysis 2004 , 5370, 992		3
103	Effects of sample size on classifier design for computer-aided diagnosis 1998,		3
102	Components of variance in ROC analysis of CADx classifier performance: II. Applications of the bootstrap 1999 , 3661, 523		3
101	Image classification using artifical neural networks 1995,		3
100	2D and 3D bladder segmentation using U-Net-based deep-learning 2019 ,		3
99	Hazards of data leakage in machine learning: a study on classification of breast cancer using deep neural networks 2020 ,		3
98	Risks of feature leakage and sample size dependencies in deep feature extraction for breast mass classification. <i>Medical Physics</i> , 2021 , 48, 2827-2837	4.4	3
97	Deep Convolutional Neural Network With Adversarial Training for Denoising Digital Breast Tomosynthesis Images. <i>IEEE Transactions on Medical Imaging</i> , 2021 , 40, 1805-1816	11.7	3
96	Variabilities in Reference Standard by Radiologists and Performance Assessment in Detection of Pulmonary Embolism in CT Pulmonary Angiography. <i>Journal of Digital Imaging</i> , 2019 , 32, 1089-1096	5.3	2
95	Pathologic categorization of lung nodules: Radiomic descriptors of CT attenuation distribution patterns of solid and subsolid nodules in low-dose CT. <i>European Journal of Radiology</i> , 2020 , 129, 10910	16 ^{4.7}	2
94	Interrater Agreement and Diagnostic Accuracy of a Novel Computer-Aided Detection Process for the Detection and Prevention of Retained Surgical Instruments. <i>American Journal of Roentgenology</i> , 2018 , 210, 709-714	5.4	2
93	False positive reduction of microcalcification cluster detection in digital breast tomosynthesis 2014 ,		2
92	Digital breast tomosynthesis: effects of projection-view distribution on computer-aided detection of microcalcification clusters 2014 ,		2
91	Automated registration of coronary arterial trees from multiple phases in coronary CT angiography (cCTA) 2013 ,		2
90	Automated segmentation and tracking of coronary arteries in cardiac CT scans: comparison of performance with a clinically used commercial software 2010 ,		2
89	Truncation artifact and boundary artifact reduction in breast tomosynthesis reconstruction 2008,		2
88	Breast mass segmentation on dynamic contrast-enhanced magnetic resonance scans using the level set method 2008 ,		2

(2020-2008)

87	Digital tomosynthesis mammography: improvement of artifact reduction method for high-attenuation objects on reconstructed slices 2008 ,		2
86	Two-view information fusion for improvement of computer-aided detection (CAD) of breast masses on mammograms 2006 , 6144, 709		2
85	Computer-aided detection of masses in digital tomosynthesis mammography: combination of 3D and 2D detection information 2007 ,		2
84	Automated detection of pulmonary embolism (PE) in computed tomographic pulmonary angiographic (CTPA) images: multiscale hierachical expectation-maximization segmentation of vessels and PEs 2007 ,		2
83	Computer-aided detection of breast masses on mammograms: bilateral analysis for false positive reduction 2006 ,		2
82	Assessment of breast lesions on stereoscopic and monoscopic digital specimen mammograms: an ROC study 2004 ,		2
81	Multimodality CAD: combination of computerized classification techniques based on mammograms and 3D ultrasound volumes for improved accuracy in breast mass characterization 2004 ,		2
80	Analysis of components of variance in multiple-reader studies of computer-aided diagnosis with different tasks 2001 ,		2
79	Multiple-reader studies, digital mammography, computer-aided diagnosis, and the Holy Grail of imaging physics: II 2001 , 4320, 619		2
78	Analysis of temporal change of mammographic features for computer-aided characterization of malignant and benign masses 2001 ,		2
77	Digital stereomammography: observer performance study of the effects of magnification and zooming on depth perception 2002 , 4682, 163		2
76	Interval change analysis in temporal pairs of mammograms using a local affine transformation 2000 ,		2
75	Digital Mammography: Development Of A Computer-Aided System For Detection Of Microcalcifications 1987 , 0767, 367		2
74	Optical image processing with liquid-crystal display for image intensifier/television systems. <i>Medical Physics</i> , 1988 , 15, 838-45	4.4	2
73	Computer-aided detection of bladder masses in CT urography (CTU) 2017,		2
72	Generalization error analysis: deep convolutional neural network in mammography 2018,		2
71	Multi-path deep learning model for automated mammographic density categorization 2019,		2
70	Deep convolutional neural network denoising for digital breast tomosynthesis reconstruction 2020 ,		2

69	Assessment of task-based performance from five clinical DBT systems using an anthropomorphic breast phantom 2020 ,		2
68	Generating high resolution digital mammogram from digitized film mammogram with conditional generative adversarial network 2020 ,		2
67	Computer-aided diagnosis in breast tomosynthesis and chest CT. <i>Japanese Journal of Radiological Technology</i> , 2009 , 65, 968-76		2
66	Analysis of deep convolutional features for detection of lung nodules in computed tomography 2019 ,		2
65	Coronary artery analysis: Computer-assisted selection of best-quality segments in multiple-phase coronary CT angiography. <i>Medical Physics</i> , 2016 , 43, 5268	4.4	2
64	Assessment of task-based performance from five clinical DBT systems using an anthropomorphic breast phantom. <i>Medical Physics</i> , 2021 , 48, 1026-1038	4.4	2
63	Quantitative analysis of CT attenuation distribution patterns of nodule components for pathologic categorization of lung nodules 2017 ,		1
62	Radiomics biomarkers for accurate tumor progression prediction of oropharyngeal cancer 2017,		1
61	Comparison of computer-aided detection of clustered microcalcifications in digital mammography and digital breast tomosynthesis 2015 ,		1
60	Comment on "Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization" [Med. Phys. 42, 6294-6308 (2015)]. <i>Medical Physics</i> , 2016 , 43, 1578	4.4	1
59	Comparison of bladder segmentation using deep-learning convolutional neural network with and without level sets 2016 ,		1
58	Assessment of mammographic breast density after sleeve gastrectomy. <i>Surgery for Obesity and Related Diseases</i> , 2018 , 14, 1643-1651	3	1
57	Digital breast tomosynthesis reconstruction with an adaptive voxel grid 2014 ,		1
56	Robustness evaluation of a computer-aided detection system for pulmonary embolism (PE) in CTPA using independent test set from multiple institutions 2015 ,		1
55	Automatic selection of best quality vessels from multiple-phase coronary CT angiography (cCTA) 2015 ,		1
54	Surgical retained foreign object (RFO) prevention by computer aided detection (CAD) 2014,		1
53	Neural network training by maximization of the area under the ROC curve: application to characterization of masses on breast ultrasound as malignant or benign 2013 ,		1
52	Computerized detection of non-calcified plaques in coronary CT angiography: topological soft-gradient detection method for plaque prescreening 2013 ,		1

51	Study of image quality in digital breast tomosynthesis by subpixel reconstruction 2013,	1
50	Computerized segmentation of ureters in CT urography (CTU) using COMPASS 2013,	1
49	Effects of projection-view distributions on image quality of calcifications in digital breast tomosynthesis (DBT) reconstruction 2010 ,	1
48	Computer-aided detection of microcalcifications in digital breast tomosynthesis (DBT): a multichannel signal detection approach on projection views 2012 ,	1
47	A similarity study between the query mass and retrieved masses using decision tree content-based image retrieval (DTCBIR) CADx system for characterization of ultrasound breast mass images 2012 ,	1
46	Interactive content-based image retrieval (CBIR) computer-aided diagnosis (CADx) system for ultrasound breast masses using relevance feedback 2012 ,	1
45	Digital breast tomosynthesis: feasibility of automated detection of microcalcification clusters on projections views 2010 ,	1
44	Neural network based segmentation using a priori image models	1
43	Neural network design for optimization of the partial area under the receiver operating characteristic curve	1
42	Breast Mass Classification on Full-Field Digital Mammography and Screen-Film Mammography. <i>Lecture Notes in Computer Science</i> , 2008 , 371-377	0.9 1
41	Automated detection of ureteral wall thickening on multi-detector row CT urography 2008,	1
40	Automated segmentation and tracking of coronary arteries in ECG-gated cardiac CT scans 2008,	1
39	Regularized discriminate analysis for breast mass detection on full field digital mammograms 2006,	1
38	Automated detection of ureter abnormalities on multi-detector row CT urography 2006,	1
37	Three-dimensional active contour model for characterization of solid breast masses on three-dimensional ultrasound images 2003 ,	1
36	Digital indirect-detection x-ray imagers with microlens focusing: effects of Fresnel reflections from the microlens layer 2003 ,	1
35	ROC study: effects of computer-aided diagnosis on radiologistsScharacterization of malignant and	1
	benign breast masses in temporal pairs of mammograms 2003 , 5032, 94	1

33	An observer study comparing spot imaging regions selected by radiologists and a computer for an automated stereo spot mammography technique. <i>Medical Physics</i> , 2004 , 31, 1558-67	4.4	1
32	Computer-aided detection of breast masses on mammograms: performance improvement using a dual system 2005 , 5747, 9		1
31	Integer wavelet compression guided by a computer-aided detection system in mammography 2001,		1
30	Optimal neural network architecture selection: effects on computer-aided detection of mammographic microcalcifications 2002 , 4684, 1325		1
29	Use of joint two-view information for computerized lesion detection on mammograms: improvement of microcalcification detection accuracy 2002 , 4684, 754		1
28	Computer-aided characterization of malignant and benign microcalcification clusters based on the analysis of temporal change of mammographic features 2002 ,		1
27	Technique to improve the effective fill factor of digital mammographic imagers 1998,		1
26	Hybrid unsupervised-supervised approach for computerized classification of malignant and benign masses on mammograms 1999 ,		1
25	Evaluation of a parallel hole grid for bedside chest imaging. <i>Investigative Radiology</i> , 1994 , 29, 682-8	10.1	1
24	Utilization Of Digital Image Data For Computer-aided Diagnosis		1
23	Evaluation Of Digital Unsharp-Mask Filtering For The Detection Of Subtle Mammographic Microcalcifications 1986 , 0626, 347		1
22	Compression of deep convolutional neural network for computer-aided diagnosis of masses in digital breast tomosynthesis 2018 ,		1
21	Differentiating invasive and pre-invasive lung cancer by quantitative analysis of histopathologic images 2018 ,		1
20	Bladder cancer treatment response assessment in CT urography using two-channel deep-learning network 2018 ,		1
19	Homogenization of breast MRI across imaging centers and feature analysis using unsupervised deep embedding 2019 ,		1
18	Inter- and Intra-Observer Variability of Radiologists Evaluating CBIR Systems. <i>Lecture Notes in Computer Science</i> , 2012 , 482-489	0.9	1
17	Improving Image Quality of Digital Breast Tomosynthesis by Artifact Reduction. <i>Lecture Notes in Computer Science</i> , 2012 , 745-752	0.9	1
16	Evaluation of light collection in digital indirect detection x-ray imagers: Monte Carlo simulations with a more realistic phosphor screen model 2003 , 54-58		1

LIST OF PUBLICATIONS

15	Digital Breast Tomosynthesis Slab Thickness: Impact on Reader Performance and Interpretation Time. <i>Radiology</i> , 2020 , 297, 534-542	20.5	1
14	Promise and Potential Pitfalls: Re-creating Images or Generating New Images for AI Modeling. <i>Radiology: Artificial Intelligence</i> , 2021 , 3, e210102	8.7	1
13	Best-Quality Vessel Identification Using Vessel Quality Measure in Multiple-Phase Coronary CT Angiography. <i>Computational and Mathematical Methods in Medicine</i> , 2016 , 2016, 1835297	2.8	1
12	Computer-aided detection of bladder mass within non-contrast-enhanced region of CT Urography (CTU) 2016 ,		1
11	A Similarity Study of Interactive Content-Based Image Retrieval Scheme for Classification of Breast Lesions. <i>IEICE Transactions on Information and Systems</i> , 2016 , E99.D, 1663-1670	0.6	1
10	First and second-order features for detection of masses in digital breast tomosynthesis 2016 ,		1
9	Ureter tracking and segmentation in CT urography (CTU) using COMPASS. <i>Medical Physics</i> , 2014 , 41, 12	219,06	О
8	Computerized Decision Support for Bladder Cancer Treatment Response Assessment in CT Urography: Effect on Diagnostic Accuracy in Multi-Institution Multi-Specialty Study <i>Tomography</i> , 2022 , 8, 644-656	3.1	O
7	Recursive training strategy for a deep learning network for segmentation of pathology nuclei with incomplete annotation. <i>IEEE Access</i> , 2022 , 1-1	3.5	O
6	Segmentation of urinary bladder in CT urography. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2012 , 2012, 3978-81	0.9	
5	Response. <i>Radiology</i> , 2015 , 275, 619	20.5	
4	Quantitative Imaging and Bladder Cancer 2021 , 1-32		
3	Breast Parenchymal Pattern (BPP) Analysis: Comparison of Digital Mammograms and Breast Tomosynthesis. <i>Lecture Notes in Computer Science</i> , 2012 , 514-520	0.9	
2	TH-E-217BCD-10: The Effect of Model Based Iterative Reconstruction (GE-VEO) on the CT Numbers and Noise of Both Small Lung Nodules and Large Homogeneous (heart and Spongiosa) Regions in an Anthropomorphic Chest Phantom. <i>Medical Physics</i> , 2012 , 39, 4016-4016	4.4	

Image Processing Analytics: Enhancements and Segmentation **2021**, 1727-1745