Hui Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1330329/publications.pdf

Version: 2024-02-01

516710 414414 1,100 40 16 32 citations h-index g-index papers 40 40 40 687 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Exceptional thermal stability of ultrafine-grained long-period stacking ordered Mg alloy. Rare Metals, 2022, 41, 1537-1542.	7.1	3
2	Microstructural Evolution and Mechanical Properties of Pure Aluminum upon Multi-Pass Caliber Rolling. Materials, 2022, 15, 1206.	2.9	2
3	A Novel In Situ (Al3Ni + Al3Ti)/Al Composite Inoculant and Its Effects on the Microstructure, Damping and Mechanical Properties of Zn–Al Eutectoid Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 2099-2115.	2.2	3
4	Corrosion Behavior of Gravity Cast and High-Pressure Die-Cast AM60 Mg Alloys with Ca and Y Addition. Metals, 2022, 12, 495.	2.3	0
5	Biodegradable Mg–Zn–Ca-Based Metallic Glasses. Materials, 2022, 15, 2172.	2.9	15
6	Effect of 1wt%Zn Addition on Microstructure and Mechanical Properties of Mg-6Er Alloys under High Strain Rates. Metals, 2022, 12, 883.	2.3	2
7	Dynamic recrystallization behavior and strengthening mechanism of quasi-precipitate-free dilute Mg–Bi–Sn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143553.	5.6	9
8	Significant Improvement in Extrudability of Mg–9Al–0.8Zn–0.9Ca–0.6Y Alloy Through Mischmetal Addition. Metals and Materials International, 2021, 27, 514-521.	3.4	18
9	A Comprehensive Study of Dynamic Recrystallization Behavior of Mg Alloy with 3 wt.% Bi Addition. Metals, 2021, 11, 838.	2.3	8
10	Sn modified nanoporous Ge for improved lithium storage performance. Journal of Colloid and Interface Science, 2021, 602, 563-572.	9.4	23
11	A high-ductility extruded Mg-Bi-Ca alloy. Materials Letters, 2020, 261, 127066.	2.6	31
12	Microstructural evolution and mechanical properties of binary Mg–xBi (x = 2, 5, and 8 wt%) alloys. Journal of Magnesium and Alloys, 2020, 9, 983-983.	11.9	29
13	Stearic Acid Coated MgO Nanoplate Arrays as Effective Hydrophobic Films for Improving Corrosion Resistance of Mg-Based Metallic Glasses. Nanomaterials, 2020, 10, 947.	4.1	6
14	A New Ultra-High-Strength AB83 Alloy by Combining Extrusion and Caliber Rolling. Materials, 2020, 13, 709.	2.9	3
15	Microstructure, Mechanical and Corrosion Properties of Mg-1.61Al-1.76Ca Alloy under Different Extrusion Temperatures. Journal of Materials Engineering and Performance, 2020, 29, 672-680.	2.5	6
16	Effect of Multi-Pass Caliber Rolling on Dilute Extruded Mg-Bi-Ca Alloy. Metals, 2020, 10, 332.	2.3	3
17	Enhancing the Mechanical Properties of AZ80 Alloy by Combining Extrusion and Three Pass Calibre Rolling. Metals, 2020, 10, 249.	2.3	5
18	Surface Morphologies and Mechanical Properties of Mg-Zn-Ca Amorphous Alloys under Chemistry-Mechanics Interactive Environments. Metals, 2019, 9, 327.	2.3	5

#	Article	IF	CITATIONS
19	AZ61 and AZ61-La Alloys as Anodes for Mg-Air Battery. Journal of Materials Engineering and Performance, 2019, 28, 2006-2016.	2.5	39
20	Recent Progress and Development in Extrusion of Rare Earth Free Mg Alloys: A Review. Acta Metallurgica Sinica (English Letters), 2019, 32, 145-168.	2.9	74
21	Thermally stable and strong bulk Mg–MgO in situ nanocomposites by reactive cryomilling and high-pressure consolidation. Journal of Materials Science, 2018, 53, 6613-6625.	3.7	18
22	Mechanical Properties and Degradation Behavior of $Mg(100\hat{a}^77x)Zn6xYx(x = 0.2, 0.4, 0.6, 0.8)$ Alloys. Metals, 2018, 8, 261.	2.3	7
23	Microstructure and mechanical properties of an extruded Mg-8Bi-1Al-1Zn (wt%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 690, 80-87.	5.6	49
24	Strengthening Effect of Extruded Mg-8Sn-2Zn-2Al Alloy: Influence of Micro and Nano-Size Mg2Sn Precipitates. Materials, 2017, 10, 822.	2.9	41
25	One-step synthesis of CuO@brass foil by dealloying method for low-cost flexible supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2016, 27, 9206-9215.	2.2	23
26	Anisotropic compressive behavior of extruded Mg alloy plates with different width–thickness ratios. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 675, 11-18.	5.6	7
27	Study on Dual Modification of Al-17%Si Alloys by Structural Heredity. Metals, 2015, 5, 1112-1126.	2.3	14
28	Dealloying of Cu-Based Metallic Glasses in Acidic Solutions: Products and Energy Storage Applications. Nanomaterials, 2015, 5, 697-721.	4.1	28
29	Die angle dependency of microstructural inhomogeneity in an indirect-extruded AZ31 magnesium alloy. Journal of Materials Processing Technology, 2015, 224, 181-188.	6.3	32
30	Development of extraordinary high-strength Mg–8Al–0.5Zn alloy via a low temperature and slow speed extrusion. Materials Science & Description of Structural Materials: Properties, Microstructure and Processing, 2014, 610, 445-449.	5.6	162
31	Effects of extrusion speed on the microstructure and mechanical properties of ZK60 alloys with and without 1wt% cerium addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 583, 25-35.	5.6	87
32	Hot deformation behavior and processing maps of Mg–Zn–Cu–Zr magnesium alloy. Transactions of Nonferrous Metals Society of China, 2013, 23, 756-764.	4.2	21
33	Effects of cerium addition on the microstructure, mechanical properties and hot workability of ZK60 alloy. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 798-807.	5.6	220
34	Microstructural evolution of indirect-extruded ZK60 alloy by adding Ce. Journal of Alloys and Compounds, 2012, 545, 139-143.	5.5	65
35	Microstructural Evolution of Rapidly Solidified ZK60 Powders during Extrusion. Journal of Materials Science and Technology, 2011, 27, 159-164.	10.7	9
36	Correlation between microstructure and tensile properties in powder metallurgy AZ91 alloys. Materials Letters, 2011, 65, 2686-2689.	2.6	14

#	Article	IF	CITATION
37	Sintering process and high temperature stability investigation for nano-scale CaB6 materials. Ceramics International, 2010, 36, 2253-2257.	4.8	9
38	EFFECTS OF ADDITIONAL ELEMENTS ON THE EVOLUTION OF SECOND PHASES IN 9-12% Cr < /font> STEEL AND RESULTING MECHANICAL PROPERTIES. International Journal of Modern Physics B, 2009, 23, 1141-1147.	2.0	2
39	Growth and magnetostriction of oriented polycrystalline Pr/sub 0.15/Tb/sub x/Dy/sub 0.85-x/Fe/sub 2/ (x=0-0.85). IEEE Transactions on Magnetics, 2001, 37, 2696-2698.	2.1	7
40	Microstructural Evolution and Resulting Mechanical Properties of Weld Joints upon Flux Cored Arc Welding and Post-Weld Heat Treatment. Defect and Diffusion Forum, 0, 283-286, 439-446.	0.4	1