Cornelia G Palivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1330200/publications.pdf

Version: 2024-02-01

		87888	123424
109	4,271	38	61
papers	citations	h-index	g-index
110	110	110	4433
110	110	110	7733
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Incorporation of phosphatidylserine improves efficiency of lipid based gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 134-143.	4.3	15
2	Inverting glucuronidation of hymecromone <i>iin situ</i> by catalytic nanocompartments. Journal of Materials Chemistry B, 2022, 10, 3916-3926.	5.8	9
3	Tailoring a Solvent-Assisted Method for Solid-Supported Hybrid Lipid–Polymer Membranes. Langmuir, 2022, 38, 6561-6570.	3.5	7
4	Current Perspectives on Synthetic Compartments for Biomedical Applications. International Journal of Molecular Sciences, 2022, 23, 5718.	4.1	8
5	A self-assembling peptidic platform to boost the cellular uptake and nuclear delivery of oligonucleotides. Biomaterials Science, 2022, 10, 4309-4323.	5.4	3
6	Multicomponent Copolymer Planar Membranes with Nanoscale Domain Separation. Nano Letters, 2022, 22, 5077-5085.	9.1	5
7	How Can Giant Plasma Membrane Vesicles Serve as a Cellular Model for Controlled Transfer of Nanoparticles?. Biomacromolecules, 2021, 22, 106-115.	5.4	9
8	Catalytic polymersomes to produce strong and long-lasting bioluminescence. Nanoscale, 2021, 13, 66-70.	5.6	13
9	From spherical compartments to polymer films: exploiting vesicle fusion to generate solid supported thin polymer membranes. Nanoscale, 2021, 13, 6944-6952.	5.6	7
10	DNA-tethered Polymersome Clusters as Nanotheranostic Platform. Chimia, 2021, 75, 296-299.	0.6	1
11	Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers. Biomacromolecules, 2021, 22, 3005-3016.	5.4	8
12	Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. International Journal of Molecular Sciences, 2021, 22, 9092.	4.1	11
13	Artificial Melanogenesis by Confining Melanin/Polydopamine Production inside Polymersomes. Macromolecular Bioscience, 2021, 21, e2100249.	4.1	8
14	Clustering of catalytic nanocompartments for enhancing an extracellular non-native cascade reaction. Chemical Science, 2021, 12, 12274-12285.	7.4	22
15	Membrane protein channels equipped with a cleavable linker for inducing catalysis inside nanocompartments. Journal of Materials Chemistry B, 2021, 9, 9012-9022.	5.8	7
16	Selfâ€Assembled Polymeric Membranes and Nanoassemblies on Surfaces: Preparation, Characterization, and Current Applications. Macromolecular Bioscience, 2020, 20, e1900257.	4.1	19
17	Bioinspired Molecular Factories with Architecture and In Vivo Functionalities as Cell Mimics. Advanced Science, 2020, 7, 1901923.	11.2	26
18	Brushing the surface: cascade reactions between immobilized nanoreactors. Nanoscale, 2020, 12, 1551-1562.	5.6	14

#	Article	IF	Citations
19	Porphyrin Containing Polymersomes with Enhanced ROS Generation Efficiency: In Vitro Evaluation. Macromolecular Bioscience, 2020, 20, e1900291.	4.1	5
20	How Do the Properties of Amphiphilic Polymer Membranes Influence the Functional Insertion of Peptide Pores?. Biomacromolecules, 2020, 21, 701-715.	5. 4	32
21	Design of Bio-Conjugated Hydrogels for Regenerative Medicine Applications: From Polymer Scaffold to Biomolecule Choice. Molecules, 2020, 25, 4090.	3.8	17
22	Immobilization of arrestin-3 on different biosensor platforms for evaluating GPCR binding. Physical Chemistry Chemical Physics, 2020, 22, 24086-24096.	2.8	5
23	Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application. Molecules, 2020, 25, 3482.	3.8	35
24	Combinatorial Strategy for Studying Biochemical Pathways in Double Emulsion Templated Cellâ€Sized Compartments. Advanced Materials, 2020, 32, e2004804.	21.0	34
25	Bioactive Catalytic Nanocompartments Integrated into Cell Physiology and Their Amplification of a Native Signaling Cascade. ACS Nano, 2020, 14, 12101-12112.	14.6	12
26	Recent Advances in Hybrid Biomimetic Polymer-Based Films: from Assembly to Applications. Polymers, 2020, 12, 1003.	4.5	20
27	The rise of bio-inspired polymer compartments responding to pathology-related signals. Journal of Materials Chemistry B, 2020, 8, 6252-6270.	5.8	11
28	Biomolecule–polymer hybrid compartments: combining the best of both worlds. Physical Chemistry Chemical Physics, 2020, 22, 11197-11218.	2.8	24
29	Polymer–Lipid Hybrid Membranes as a Model Platform to Drive Membrane–Cytochrome <i>c</i> Interaction and Peroxidase-like Activity. Journal of Physical Chemistry B, 2020, 124, 4454-4465.	2.6	14
30	Giant Polymer Compartments for Confined Reactions. Chemistry, 2020, 2, 470-489.	2.2	6
31	Multicompartment Polymer Vesicles with Artificial Organelles for Signalâ€Triggered Cascade Reactions Including Cytoskeleton Formation. Advanced Functional Materials, 2020, 30, 2002949.	14.9	57
32	Segregated Nanocompartments Containing Therapeutic Enzymes and Imaging Compounds within DNAâ€Zipped Polymersome Clusters for Advanced Nanotheranostic Platform. Small, 2020, 16, e1906492.	10.0	22
33	Decorating Nanostructured Surfaces with Antimicrobial Peptides to Efficiently Fight Bacteria. ACS Applied Bio Materials, 2020, 3, 1533-1543.	4.6	20
34	Organelle-specific targeting of polymersomes into the cell nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2770-2778.	7.1	58
35	DNA-directed arrangement of soft synthetic compartments and their behavior <i>in vitro</i> and <i>in vivo</i> . Nanoscale, 2020, 12, 9786-9799.	5.6	11
36	A self-assembling amphiphilic peptide nanoparticle for the efficient entrapment of DNA cargoes up to 100 nucleotides in length. Soft Matter, 2020, 16, 1678-1691.	2.7	15

#	Article	IF	CITATIONS
37	Battling Bacteria with Free and Surface-Immobilized Polymeric Nanostructures. , 2020, , 385-408.		O
38	Mimicking Cellular Signaling Pathways within Synthetic Multicompartment Vesicles with Triggered Enzyme Activity and Induced Ion Channel Recruitment. Advanced Functional Materials, 2019, 29, 1904267.	14.9	58
39	Enzymatic reactions in polymeric compartments: nanotechnology meets nature. Current Opinion in Biotechnology, 2019, 60, 53-62.	6.6	41
40	Surfaces with Dual Functionality through Specific Coimmobilization of Self-Assembled Polymeric Nanostructures. Langmuir, 2019, 35, 4557-4565.	3.5	15
41	Nanoscienceâ€Based Strategies to Engineer Antimicrobial Surfaces. Advanced Science, 2018, 5, 1700892.	11.2	90
42	Surfaces Decorated with Polymeric Nanocompartments for <scp>pH</scp> Reporting. Helvetica Chimica Acta, 2018, 101, e1700290.	1.6	10
43	Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment. Nature Communications, 2018, 9, 1127.	12.8	118
44	Porphyrin-polymer nanocompartments: singlet oxygen generation and antimicrobial activity. Journal of Biological Inorganic Chemistry, 2018, 23, 109-122.	2.6	24
45	Antioxidant functionalized polymer capsules to prevent oxidative stress. Acta Biomaterialia, 2018, 67, 21-31.	8.3	55
46	Nanoscale Enzymatic Compartments in Tandem Support Cascade Reactions in Vitro. Biomacromolecules, 2018, 19, 4023-4033.	5.4	56
47	Live Follow-Up of Enzymatic Reactions Inside the Cavities of Synthetic Giant Unilamellar Vesicles Equipped with Membrane Proteins Mimicking Cell Architecture. ACS Synthetic Biology, 2018, 7, 2116-2125.	3.8	32
48	Challenges in Malaria Management and a Glimpse at Some Nanotechnological Approaches. Advances in Experimental Medicine and Biology, 2018, 1052, 103-112.	1.6	7
49	Delivery of <scp>ROS</scp> Generating Anthraquinones Using Reductionâ€Responsive Peptideâ€Based Nanoparticles. Helvetica Chimica Acta, 2018, 101, e1800064.	1.6	4
50	Biomimetic Planar Polymer Membranes Decorated with Enzymes as Functional Surfaces. Langmuir, 2018, 34, 9015-9024.	3.5	13
51	Bioinspired, nanoscale approaches in contemporary bioanalytics (Review). Biointerphases, 2018, 13, 040801.	1.6	12
52	Mixedâ€Valent Molecular Triple Deckers. Angewandte Chemie - International Edition, 2018, 57, 11688-11691.	13.8	9
53	Mixedâ€Valent Molecular Triple Deckers. Angewandte Chemie, 2018, 130, 11862-11865.	2.0	4
54	Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Frontiers in Chemistry, 2018, 6, 645.	3.6	45

#	Article	IF	CITATIONS
55	Expanding the potential of MRI contrast agents through multifunctional polymeric nanocarriers. Nanomedicine, 2017, 12, 811-817.	3.3	12
56	Bio-catalytic nanocompartments for in situ production of glucose-6-phosphate. Chemical Communications, 2017, 53, 10148-10151.	4.1	17
57	Biomimetic Strategy To Reversibly Trigger Functionality of Catalytic Nanocompartments by the Insertion of pH-Responsive Biovalves. Nano Letters, 2017, 17, 5790-5798.	9.1	54
58	Amphiphilic Peptide Self-Assembly: Expansion to Hybrid Materials. Biomacromolecules, 2017, 18, 3471-3480.	5.4	68
59	Biopores/membrane proteins in synthetic polymer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 619-638.	2.6	70
60	'Active Surfaces' as Possible Functional Systems in Detection and Chemical (Bio) Reactivity. Chimia, 2016, 70, 402.	0.6	1
61	Engineered non-toxic cationic nanocarriers with photo-triggered slow-release properties. Polymer Chemistry, 2016, 7, 3451-3464.	3.9	19
62	Asymmetric Triblock Copolymer Nanocarriers for Controlled Localization and pH-Sensitive Release of Proteins. Langmuir, 2016, 32, 10235-10243.	3.5	8
63	Artificial Organelles: Reactions inside Protein–Polymer Supramolecular Assemblies. Chimia, 2016, 70, 424.	0.6	8
64	DNA-Mediated Self-Organization of Polymeric Nanocompartments Leads to Interconnected Artificial Organelles. Nano Letters, 2016, 16, 7128-7136.	9.1	39
65	Angiopep2-functionalized polymersomes for targeted doxorubicin delivery to glioblastoma cells. International Journal of Pharmaceutics, 2016, 511, 794-803.	5.2	42
66	Nanoparticle-based highly sensitive MRI contrast agents with enhanced relaxivity in reductive milieu. Chemical Communications, 2016, 52, 9937-9940.	4.1	9
67	An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery. Nanoscale, 2016, 8, 14858-14869.	5.6	33
68	Giant Host Red Blood Cell Membrane Mimicking Polymersomes Bind Parasite Proteins and Malaria Parasites. Chimia, 2016, 70, 288.	0.6	9
69	Interfacing Functional Systems. Chimia, 2016, 70, 418.	0.6	1
70	Bioinspired polymer vesicles and membranes for biological and medical applications. Chemical Society Reviews, 2016, 45, 377-411.	38.1	485
71	Stimuli-Responsive Codelivery of Oligonucleotides and Drugs by Self-Assembled Peptide Nanoparticles. Biomacromolecules, 2016, 17, 935-945.	5.4	38
72	Active surfaces engineered by immobilizing protein-polymer nanoreactors for selectively detecting sugar alcohols. Biomaterials, 2016, 89, 79-88.	11.4	36

#	Article	IF	CITATIONS
73	Charge Transfer Pathways in Three Isomers of Naphthalene-Bridged Organic Mixed Valence Compounds. Journal of Organic Chemistry, 2016, 81, 595-602.	3.2	34
74	Analysis of Molecular Parameters Determining the Antimalarial Activity of Polymerâ€Based Nanomimics. Macromolecular Rapid Communications, 2015, 36, 1923-1928.	3.9	13
75	Does Membrane Thickness Affect the Transport of Selective Ions Mediated by Ionophores in Synthetic Membranes?. Macromolecular Rapid Communications, 2015, 36, 1929-1934.	3.9	16
76	Dynamics of Membrane Proteins within Synthetic Polymer Membranes with Large Hydrophobic Mismatch. Nano Letters, 2015, 15, 3871-3878.	9.1	93
77	Polymersomes with engineered ion selective permeability as stimuli-responsive nanocompartments with preserved architecture. Biomaterials, 2015, 53, 406-414.	11.4	81
78	Hybrid Polymer–Lipid Films as Platforms for Directed Membrane Protein Insertion. Langmuir, 2015, 31, 4868-4877.	3.5	62
79	Stimuli-Triggered Activity of Nanoreactors by Biomimetic Engineering Polymer Membranes. Nano Letters, 2015, 15, 7596-7603.	9.1	77
80	Selective ion-permeable membranes by insertion of biopores into polymersomes. Physical Chemistry Chemical Physics, 2015, 17, 15538-15546.	2.8	51
81	pH-Triggered Reversible Multiple Protein–Polymer Conjugation Based on Molecular Recognition. Journal of Physical Chemistry B, 2015, 119, 12066-12073.	2.6	3
82	Ceria loaded nanoreactors: a nontoxic superantioxidant system with high stability and efficacy. Nanoscale, 2015, 7, 1411-1423.	5.6	27
83	Polymeric 3D nano-architectures for transport and delivery of therapeutically relevant biomacromolecules. Biomaterials Science, 2015, 3, 25-40.	5.4	58
84	Nanomimics of Host Cell Membranes Block Invasion and Expose Invasive Malaria Parasites. ACS Nano, 2014, 8, 12560-12571.	14.6	60
85	Polymersomes conjugated to 83-14 monoclonal antibodies: Invitro targeting of brain capillary endothelial cells. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 316-324.	4.3	52
86	Planar Biomimetic Membranes Based on Amphiphilic Block Copolymers. ACS Macro Letters, 2014, 3, 59-63.	4.8	38
87	Cellular Trojan Horse Based Polymer Nanoreactors with Light-Sensitive Activity. Journal of Physical Chemistry B, 2014, 118, 9361-9370.	2.6	25
88	A general strategy for creating self-defending surfaces for controlled drug production for long periods of time. Journal of Materials Chemistry B, 2014, 2, 4684.	5.8	30
89	"Active Surfaces―Formed by Immobilization of Enzymes on Solid-Supported Polymer Membranes. Langmuir, 2014, 30, 11660-11669.	3.5	29
90	Effect of Molecular Parameters on the Architecture and Membrane Properties of 3D Assemblies of Amphiphilic Copolymers. Macromolecules, 2014, 47, 5060-5069.	4.8	40

#	Article	IF	CITATIONS
91	Functional surface engineering by nucleotide-modulated potassium channel insertion into polymer membranes attached to solid supports. Biomaterials, 2014, 35, 7286-7294.	11.4	40
92	Polymer nanocompartments in broad-spectrum medical applications. Nanomedicine, 2013, 8, 425-447.	3.3	49
93	Light-responsive polymer nanoreactors: a source of reactive oxygen species on demand. Nanoscale, 2013, 5, 217-224.	5.6	45
94	Polymer nanoreactors shown to produce and release antibiotics locally. Chemical Communications, 2013, 49, 128-130.	4.1	104
95	Aiding Nature's Organelles: Artificial Peroxisomes Play Their Role. Nano Letters, 2013, 13, 2875-2883.	9.1	149
96	Protein–Polymer Supramolecular Assemblies: A Key Combination for Multifunctionality. Chimia, 2013, 67, 791-795.	0.6	1
97	Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane. Scientific Reports, 2013, 3, 2196.	3.3	46
98	Polymer Nanoreactors with Dual Functionality: Simultaneous Detoxification of Peroxynitrite and Oxygen Transport. Langmuir, 2012, 28, 15889-15899.	3.5	47
99	Mimicking the cell membrane with block copolymer membranes. Journal of Polymer Science Part A, 2012, 50, 2293-2318.	2.3	115
100	Protein–polymer nanoreactors for medical applications. Chemical Society Reviews, 2012, 41, 2800-2823.	38.1	158
101	A surprising system: polymeric nanoreactors containing a mimic with dual-enzyme activity. Soft Matter, 2011, 7, 5595.	2.7	47
102	Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter, 2011, 7, 9167.	2.7	128
103	Can polymeric vesicles that confine enzymatic reactions act as simplified organelles?. FEBS Letters, 2011, 585, 1699-1706.	2.8	66
104	Enzymatic Cascade Reactions inside Polymeric Nanocontainers: A Means to Combat Oxidative Stress. Chemistry - A European Journal, 2011, 17, 4552-4560.	3.3	121
105	Bio-Decorated Polymer Membranes: A New Approach in Diagnostics and Therapeutics. Polymers, 2011, 3, 173-192.	4.5	28
106	Amphiphilic Copolymer Membranes Promote NADH:Ubiquinone Oxidoreductase Activity: Towards an Electronâ€Transfer Nanodevice. Macromolecular Chemistry and Physics, 2010, 211, 229-238.	2.2	63
107	Protein decorated membranes by specific molecular interactions. Soft Matter, 2010, 6, 2815.	2.7	28
108	Global Structure–Activity Analysis in Drug Development Illustrated for Active Cu/Zn Superoxide Dismutase Mimics. European Journal of Inorganic Chemistry, 2009, 2009, 4634-4639.	2.0	5

#	Article	IF	CITATIONS
109	Antioxidant Nanoreactor Based on Superoxide Dismutase Encapsulated in Superoxide-Permeable Vesicles. Journal of Physical Chemistry B, 2008, 112, 8211-8217.	2.6	110