Armando Sepulveda-Jauregui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1330161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences, 2015, 12, 3197-3223.	1.3	142
2	Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Science of the Total Environment, 2017, 607-608, 23-31.	3.9	113
3	Eutrophication exacerbates the impact of climate warming on lake methane emission. Science of the Total Environment, 2018, 636, 411-419.	3.9	95
4	Ubiquitous and significant anaerobic oxidation of methane in freshwater lake sediments. Water Research, 2018, 144, 332-340.	5.3	84
5	Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes. Biogeosciences, 2015, 12, 4595-4606.	1.3	76
6	Anaerobic oxidation of methane and associated microbiome in anoxic water of Northwestern Siberian lakes. Science of the Total Environment, 2020, 736, 139588.	3.9	67
7	Modeling the impediment of methane ebullition bubbles by seasonal lake ice. Biogeosciences, 2014, 11, 6791-6811.	1.3	63
8	In Situ Measurement of Dissolved Methane and Carbon Dioxide in Freshwater Ecosystems by Off-Axis Integrated Cavity Output Spectroscopy. Environmental Science & Technology, 2014, 48, 11421-11428.	4.6	62
9	Thermokarst lake methanogenesis along a complete talik profile. Biogeosciences, 2015, 12, 4317-4331.	1.3	43
10	Methane emissions from Mexican freshwater bodies: correlations with water pollution. Hydrobiologia, 2014, 721, 9-22.	1.0	35
11	First evidence for cold-adapted anaerobic oxidation of methane in deep sediments of thermokarst lakes. Environmental Research Communications, 2019, 1, 021002.	0.9	33
12	Methane emission from aquatic ecosystems of Mexico City. Aquatic Sciences, 2017, 79, 159-169.	0.6	31
13	Evaluation of vegetation communities, water table, and peat composition as drivers of greenhouse gas emissions in lowland tropical peatlands. Science of the Total Environment, 2019, 688, 1193-1204.	3.9	29
14	A synthesis of methane dynamics in thermokarst lake environments. Earth-Science Reviews, 2020, 210, 103365.	4.0	28
15	Temperature differently affected methanogenic pathways and microbial communities in sub-Antarctic freshwater ecosystems. Environment International, 2021, 154, 106575.	4.8	21
16	A new method for field measurement of dissolved methane in water using infrared tunable diode laser absorption spectroscopy. Limnology and Oceanography: Methods, 2012, 10, 560-567.	1.0	20
17	Sub-oxycline methane oxidation can fully uptake CH4 produced in sediments: case study of a lake in Siberia. Scientific Reports, 2020, 10, 3423.	1.6	20
18	Diel variation of CH ₄ and CO ₂ dynamics in two contrasting temperate lakes. Inland Waters, 2020, 10, 333-347.	1.1	13

#	Article	IF	CITATIONS
19	Biogeochemical Distinctiveness of Peatland Ponds, Thermokarst Waterbodies, and Lakes. Geophysical Research Letters, 2022, 49, .	1.5	11
20	The impact of anthropogenic pollution on limnological characteristics of a subtropical highland reservoir " <i>Lago de Guadalupe</i> â€; Mexico. Knowledge and Management of Aquatic Ecosystems, 2013, , 04.	0.5	10
21	Synthesizing redox biogeochemistry at aquatic interfaces. Limnologica, 2018, 68, 59-70.	0.7	10
22	Assessment of methane and carbon dioxide emissions in two subâ€basins of a small acidic bog lake artificially divided 30Âyears ago. Freshwater Biology, 2018, 63, 1534-1549.	1.2	8
23	Diversifying Chile's climate action away from industrial plantations. Environmental Science and Policy, 2021, 124, 85-89.	2.4	8
24	A fast and sensitive method for the continuous in situ determination of dissolved methane and its δ ¹³ Câ€isotope ratio in surface waters. Limnology and Oceanography: Methods, 2018, 16, 273-285.	1.0	7
25	Methanogenic activity tests by Infrared Tunable Diode Laser Absorption Spectroscopy. Journal of Microbiological Methods, 2012, 91, 89-92.	0.7	5
26	A simple model for the numerical characterization of spatiotemporal variability in aquatic ecosystems. Aquatic Sciences, 2019, 81, 1.	0.6	5
27	Protecting Patagonian peatlands in Chile. Science, 2019, 366, 1207-1208.	6.0	5
28	Real Time Measurement of Concentration and δ13C-CH4 in Water. Procedia Earth and Planetary Science, 2017, 17, 460-463.	0.6	1