
Esther Badosa RomañÃ³

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1329865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	D-Amino Acid-Containing Lipopeptides Derived from the Lead Peptide BP100 with Activity against Plant Pathogens. International Journal of Molecular Sciences, 2021, 22, 6631.	4.1	10
2	A Bifunctional Peptide Conjugate That Controls Infections of Erwinia amylovora in Pear Plants. Molecules, 2021, 26, 3426.	3.8	9
3	A Bifunctional Synthetic Peptide With Antimicrobial and Plant Elicitation Properties That Protect Tomato Plants From Bacterial and Fungal Infections. Frontiers in Plant Science, 2021, 12, 756357.	3.6	14
4	Antimicrobial Peptides With Antibiofilm Activity Against Xylella fastidiosa. Frontiers in Microbiology, 2021, 12, 753874.	3.5	10
5	Screening and identification of BP100 peptide conjugates active against Xylella fastidiosa using a viability-qPCR method. BMC Microbiology, 2020, 20, 229.	3.3	18
6	Antimicrobial peptide KSL-W and analogues: Promising agents to control plant diseases. Peptides, 2019, 112, 85-95.	2.4	17
7	Biological control of bacterial plant diseases with <i>Lactobacillus plantarum</i> strains selected for their broadâ€spectrum activity. Annals of Applied Biology, 2019, 174, 92-105.	2.5	92
8	Monitoring Viable Cells of the Biological Control Agent Lactobacillus plantarum PM411 in Aerial Plant Surfaces by Means of a Strain-Specific Viability Quantitative PCR Method. Applied and Environmental Microbiology, 2018, 84, .	3.1	30
9	Antimicrobial activity of linear lipopeptides derived from BP100 towards plant pathogens. PLoS ONE, 2018, 13, e0201571.	2.5	23
10	Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments. PLoS ONE, 2018, 13, e0190931.	2.5	39
11	Design, synthesis, and biological evaluation of cyclic peptidotriazoles derived from BPC194 as novel agents for plant protection. Biopolymers, 2017, 108, e23012.	2.4	8
12	Production of BP178, a derivative of the synthetic antibacterial peptide BP100, in the rice seed endosperm. BMC Plant Biology, 2017, 17, 63.	3.6	23
13	Rational Design of Cyclic Antimicrobial Peptides Based on BPC194 and BPC198. Molecules, 2017, 22, 1054.	3.8	16
14	Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria. Molecules, 2017, 22, 1817.	3.8	7
15	Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies. PLoS ONE, 2016, 11, e0146919.	2.5	29
16	Synthetic Cyclolipopeptides Selective against Microbial, Plant and Animal Cell Targets by Incorporation of D-Amino Acids or Histidine. PLoS ONE, 2016, 11, e0151639.	2.5	15
17	Post Harvest Control. , 2015, , 193-202.		3
18	Solidâ€Phase Synthesis of Peptide Conjugates Derived from the Antimicrobial Cyclic Decapeptide BPC194. European Journal of Organic Chemistry, 2015, 2015, 1117-1129.	2.4	6

#	Article	IF	CITATIONS
19	Production of cecropin A antimicrobial peptide in rice seed endosperm. BMC Plant Biology, 2014, 14, 102.	3.6	63
20	Solidâ€Phase Synthesis of Cyclic Lipopeptidotriazoles. European Journal of Organic Chemistry, 2014, 2014, 4785-4794.	2.4	4
21	Antimicrobial Peptides Incorporating Non-Natural Amino Acids as Agents for Plant Protection. Protein and Peptide Letters, 2014, 21, 357-367.	0.9	20
22	Phenotypic comparison of clinical and plant-beneficial strains of Pantoea agglomerans. International Microbiology, 2014, 17, 81-90.	2.4	10
23	Biological control of fire blight of apple and pear with antagonistic Lactobacillus plantarum. European Journal of Plant Pathology, 2013, 137, 621-633.	1.7	54
24	A convenient solid-phase strategy for the synthesis of antimicrobial cyclic lipopeptides. Organic and Biomolecular Chemistry, 2013, 11, 3365.	2.8	10
25	Synthesis of Cyclic Peptidotriazoles with Activity Against Phytopathogenic Bacteria. European Journal of Organic Chemistry, 2013, 2013, 4933-4943.	2.4	13
26	Derivatives of the Antimicrobial Peptide BP100 for Expression in Plant Systems. PLoS ONE, 2013, 8, e85515.	2.5	48
27	Peptidotriazoles with antimicrobial activity against bacterial and fungal plant pathogens. Peptides, 2012, 33, 9-17.	2.4	18
28	Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness. BMC Plant Biology, 2012, 12, 159.	3.6	43
29	Multivalent display of the antimicrobial peptides BP100 and BP143. Beilstein Journal of Organic Chemistry, 2012, 8, 2106-2117.	2.2	9
30	Solidâ€Phase Synthesis of 5â€Arylhistidine ontaining Peptides with Antimicrobial Activity Through a Microwaveâ€Assisted Suzuki–Miyaura Cross oupling. European Journal of Organic Chemistry, 2012, 2012, 4321-4332.	2.4	18
31	Antimicrobial Peptides for Plant Disease Control. From Discovery to Application. ACS Symposium Series, 2012, , 235-261.	0.5	23
32	Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. Trees - Structure and Function, 2012, 26, 215-226.	1.9	67
33	Improvement of the Efficacy of Linear Undecapeptides against Plant-Pathogenic Bacteria by Incorporation of <scp>d</scp> -Amino Acids. Applied and Environmental Microbiology, 2011, 77, 2667-2675.	3.1	51
34	Sporicidal Activity of Synthetic Antifungal Undecapeptides and Control of <i>Penicillium</i> Rot of Apples. Applied and Environmental Microbiology, 2009, 75, 5563-5569.	3.1	55
35	Evaluation of ISO enrichment real-time PCR methods with internal amplification control for detection ofListeria monocytogenesandSalmonella entericain fresh fruit and vegetables. Letters in Applied Microbiology, 2009, 49, 105-111.	2.2	26
36	Microbiological quality of fresh fruit and vegetable products in Catalonia (Spain) using normalised plateâ€counting methods and real time polymerase chain reaction (QPCR). Journal of the Science of Food and Agriculture, 2008, 88, 605-611.	3.5	60

#	Article	IF	CITATIONS
37	Growth promotion and biological control of root-knot nematodes in micropropagated banana during the nursery stage by treatment with specific bacterial strains. Annals of Applied Biology, 2008, 152, 41-48.	2.5	14
38	Bioprotection of Golden Delicious apples and Iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria. International Journal of Food Microbiology, 2008, 123, 50-60.	4.7	148
39	Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. International Journal of Food Microbiology, 2008, 127, 91-98.	4.7	71
40	Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. International Microbiology, 2008, 11, 231-6.	2.4	143
41	A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides, 2007, 28, 2276-2285.	2.4	145
42	Epiphytic fitness of a biological control agent of fire blight in apple and pear orchards under Mediterranean weather conditions. FEMS Microbiology Ecology, 2007, 59, 186-193.	2.7	21
43	De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria. Peptides, 2006, 27, 2567-2574.	2.4	57
44	Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach. Peptides, 2006, 27, 2575-2584.	2.4	55
45	Pathogen aggressiveness and postharvest biocontrol efficiency in Pantoea agglomerans. Postharvest Biology and Technology, 2006, 39, 299-307.	6.0	56
46	Inhibition of Plant-Pathogenic Bacteria by Short Synthetic Cecropin A-Melittin Hybrid Peptides. Applied and Environmental Microbiology, 2006, 72, 3302-3308.	3.1	106
47	Assessment of the Environmental Fate of the Biological Control Agent of Fire Blight, Pseudomonas fluorescens EPS62e, on Apple by Culture and Real-Time PCR Methods. Applied and Environmental Microbiology, 2006, 72, 2421-2427.	3.1	58
48	Development of a strain-specific quantitative method for monitoringPseudomonas fluorescensEPS62e, a novel biocontrol agent of fire blight. FEMS Microbiology Letters, 2005, 249, 343-352.	1.8	51
49	Lack of detection of ampicillin resistance gene transfer from Bt176 transgenic corn to culturable bacteria under field conditions. FEMS Microbiology Ecology, 2004, 48, 169-178.	2.7	39
50	Growth promotion of Prunus rootstocks by root treatment with specific bacterial strains. Plant and Soil, 2003, 255, 555-569.	3.7	21
51	Plant-microbe interactions and the new biotechnological methods of plant disease control. International Microbiology, 2002, 5, 169-175.	2.4	35
52	Peptide Conjugates Derived from flg15, Pep13, and PIP1 That Are Active against Plant-Pathogenic Bacteria and Trigger Plant Defense Responses. Applied and Environmental Microbiology, 0, , .	3.1	1