Ruikang Tang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/132949/ruikang-tang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

188 65 5,213 40 h-index g-index citations papers 6,506 8.6 5.87 203 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
188	Tannic acid induces dentin biomineralization by crosslinking and surface modification <i>RSC Advances</i> , 2022 , 12, 3454-3464	3.7	3
187	Inhibition of caspase-1-mediated inflammasome activation reduced blood coagulation in cerebrospinal fluid after subarachnoid haemorrhage <i>EBioMedicine</i> , 2022 , 76, 103843	8.8	1
186	Cepharanthine Attenuates Early Brain Injury after Subarachnoid Hemorrhage in Mice via Inhibiting 15-Lipoxygenase-1-Mediated Microglia and Endothelial Cell Ferroptosis <i>Oxidative Medicine and Cellular Longevity</i> , 2022 , 2022, 4295208	6.7	1
185	Nano-hydroxyapatite accelerates vascular calcification via lysosome impairment and autophagy dysfunction in smooth muscle cells. <i>Bioactive Materials</i> , 2022 , 8, 478-493	16.7	2
184	Crosstalk Between the Oxidative Stress and Glia Cells After Stroke: From Mechanism to Therapies <i>Frontiers in Immunology</i> , 2022 , 13, 852416	8.4	3
183	Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration <i>Frontiers in Aging Neuroscience</i> , 2022 , 14, 825086	5.3	5
182	Biomimetic mineralization: An emerging organism engineering strategy for biomedical applications <i>Journal of Inorganic Biochemistry</i> , 2022 , 232, 111815	4.2	3
181	Systemic and single cell level responses to 1[hm size biomaterials demonstrate distinct biological effects revealed by multi-omics atlas <i>Bioactive Materials</i> , 2022 , 18, 199-212	16.7	1
180	Injectable Dual-Dynamic-Bond Cross-Linked Hydrogel for Highly Efficient Infected Diabetic Wound Healing <i>Advanced Healthcare Materials</i> , 2022 , e2200516	10.1	1
179	TRP Family Genes Are Differently Expressed and Correlated with Immune Response in Glioma. <i>Brain Sciences</i> , 2022 , 12, 662	3.4	0
178	A flexible and degradable hybrid mineral as a plastic substitute Advanced Materials, 2021, e2107523	24	9
177	Diagnostic Value of Non-Contrast CT in Cerebrospinal Fluid Leakage After Endoscopic Transnasal Surgery for Sellar and Suprasellar Tumors <i>Frontiers in Oncology</i> , 2021 , 11, 735778	5.3	
176	Engineered osteoclasts as living treatment materials for heterotopic ossification therapy. <i>Nature Communications</i> , 2021 , 12, 6327	17.4	1
175	A new perspective on cerebrospinal fluid dynamics after subarachnoid hemorrhage: From normal physiology to pathophysiological changes. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2021 , 27167	′8₹211	045748
174	Hydroxypropylmethylcellulose as a film and hydrogel carrier for ACP nanoprecursors to deliver biomimetic mineralization. <i>Journal of Nanobiotechnology</i> , 2021 , 19, 385	9.4	1
173	Prussian Blue/Calcium Peroxide Nanocomposites-Mediated Tumor Cell Iron Mineralization for Treatment of Experimental Lung Adenocarcinoma. <i>ACS Nano</i> , 2021 ,	16.7	4
172	Trilogy Development of Proopiomelanocortin Neurons From Embryonic to Adult Stages in the Mice Retina. <i>Frontiers in Cell and Developmental Biology</i> , 2021 , 9, 718851	5.7	O

171 Biomineralization 2021,

170	Peritumoral Edema Is Associated With Postoperative Hemorrhage and Reoperation Following Vestibular Schwannoma Surgery. <i>Frontiers in Oncology</i> , 2021 , 11, 633350	5.3	O
169	Melatonin Ameliorates Hemorrhagic Transformation via Suppression of ROS-Induced NLRP3 Activation after Cerebral Ischemia in Hyperglycemic Rats. <i>Oxidative Medicine and Cellular Longevity</i> , 2021 , 2021, 6659282	6.7	4
168	A Highly Sensitive, Reversible, and Bidirectional Humidity Actuator by Calcium Carbonate Ionic Oligomers Incorporated Poly(Vinylidene Fluoride). <i>Advanced Functional Materials</i> , 2021 , 31, 2101291	15.6	15
167	Endoscopic Endonasal Transclival Approach to Ventral Pontine Cavernous Malformation: Case Report. <i>Frontiers in Surgery</i> , 2021 , 8, 654837	2.3	0
166	Revealing Au as Elementary Clusters During the Early Formation of Au Nanocrystals. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 5938-5943	6.4	1
165	An updated review of autophagy in ischemic stroke: From mechanisms to therapies. <i>Experimental Neurology</i> , 2021 , 340, 113684	5.7	9
164	Pressure-driven fusion of amorphous particles into integrated monoliths. <i>Science</i> , 2021 , 372, 1466-1470) 33.3	11
163	Biomineralization: Biomimetic Synthesis of Materials and Biomimetic Regulation of Organisms. <i>Chinese Journal of Chemistry</i> , 2021 , 39, 2071-2082	4.9	4
162	Development of a nomogram for predicting clinical outcome in patients with angiogram-negative subarachnoid hemorrhage. <i>CNS Neuroscience and Therapeutics</i> , 2021 , 27, 1339-1347	6.8	3
161	Improvement of organisms by biomimetic mineralization: A material incorporation strategy for biological modification. <i>Acta Biomaterialia</i> , 2021 , 120, 57-80	10.8	11
160	Effect of aspartic acid on the crystallization kinetics of ACP and dentin remineralization. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2021 , 115, 104226	4.1	7
159	Polyelectrolyte-calcium complexes as a pre-precursor induce biomimetic mineralization of collagen. <i>Nanoscale</i> , 2021 , 13, 953-967	7.7	14
158	OrganismMaterials Integration: A Promising Strategy for Biomedical Applications. <i>Advanced NanoBiomed Research</i> , 2021 , 1, 2000044	О	1
157	Deep venous drainage variant rate and degree may be higher in patients with perimesencephalic than in non-perimesencephalic angiogram-negative subarachnoid hemorrhage. <i>European Radiology</i> , 2021 , 31, 1290-1299	8	2
156	Construction of Inorganic Bulks through Coalescence of Particle Precursors. <i>Nanomaterials</i> , 2021 , 11,	5.4	2
155	A Macromolecular Drug for Cancer Therapy via Extracellular Calcification. <i>Angewandte Chemie</i> , 2021 , 133, 6583-6591	3.6	2
154	Ceria nanoparticles ameliorate white matter injury after intracerebral hemorrhage: microglia-astrocyte involvement in remyelination. <i>Journal of Neuroinflammation</i> , 2021 , 18, 43	10.1	16

153	Titelbild: A Macromolecular Drug for Cancer Therapy via Extracellular Calcification (Angew. Chem. 12/2021). <i>Angewandte Chemie</i> , 2021 , 133, 6253-6253	3.6	
152	Solid-State Nuclear Magnetic Resonance Identifies Abnormal Calcium Phosphate Formation in Diseased Bones. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 1159-1168	5.5	1
151	A Macromolecular Drug for Cancer Therapy via Extracellular Calcification. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6509-6517	16.4	15
150	Novel nanomaterial-organism hybrids with biomedical potential. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021 , 13, e1706	9.2	3
149	Oxidative Stress-Induced Ferroptosis in Cardiovascular Diseases and Epigenetic Mechanisms. <i>Frontiers in Cell and Developmental Biology</i> , 2021 , 9, 685775	5.7	2
148	Phase Transformation Mechanism of Amorphous Calcium Phosphate to Hydroxyapatite Investigated by Liquid-Cell Transmission Electron Microscopy. <i>Crystal Growth and Design</i> , 2021 , 21, 5126	5 ⁻³ 5 ⁵ 134	3
147	Shell-mediated phagocytosis to reshape viral-vectored vaccine-induced immunity. <i>Biomaterials</i> , 2021 , 276, 121062	15.6	3
146	Neurosteroids: A novel promise for the treatment of stroke and post-stroke complications. <i>Journal of Neurochemistry</i> , 2021 ,	6	2
145	Intraosseous Injection of Calcium Phosphate Polymer-Induced Liquid Precursor Increases Bone Density and Improves Early Implant Osseointegration in Ovariectomized Rats. <i>International Journal of Nanomedicine</i> , 2021 , 16, 6217-6229	7.3	1
144	Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. <i>Journal of Neuroinflammation</i> , 2021 , 18, 2	10.1	22
	Tottowning tradition of the armit of the aroung tall matter, 2021, 10, 2		
143	SDF-1 MicroRNA-134 Axis Regulates Nonfunctioning Pituitary Neuroendocrine Tumor Growth Targeting VEGFA. Frontiers in Endocrinology, 2020, 11, 566761	5.7	3
143 142	SDF-1∄MicroRNA-134 Axis Regulates Nonfunctioning Pituitary Neuroendocrine Tumor Growth		3
	SDF-1∄MicroRNA-134 Axis Regulates Nonfunctioning Pituitary Neuroendocrine Tumor Growth Targeting VEGFA. <i>Frontiers in Endocrinology</i> , 2020 , 11, 566761 Protective effect of c-Myc/Rab7a signal pathway in glioblastoma cells under hypoxia. <i>Annals of</i>	5.7	
142	SDF-1∄MicroRNA-134 Axis Regulates Nonfunctioning Pituitary Neuroendocrine Tumor Growth Targeting VEGFA. <i>Frontiers in Endocrinology</i> , 2020 , 11, 566761 Protective effect of c-Myc/Rab7a signal pathway in glioblastoma cells under hypoxia. <i>Annals of Translational Medicine</i> , 2020 , 8, 283	5·7 3.2	2
142	SDF-1 MicroRNA-134 Axis Regulates Nonfunctioning Pituitary Neuroendocrine Tumor Growth Targeting VEGFA. Frontiers in Endocrinology, 2020, 11, 566761 Protective effect of c-Myc/Rab7a signal pathway in glioblastoma cells under hypoxia. Annals of Translational Medicine, 2020, 8, 283 Recent experimental explorations of non-classical nucleation. CrystEngComm, 2020, 22, 4057-4073 Polydopamine Promotes Dentin Remineralization via Interfacial Control. ACS Biomaterials Science	5.7 3.2 3.3	2 17
142 141 140	SDF-1 MicroRNA-134 Axis Regulates Nonfunctioning Pituitary Neuroendocrine Tumor Growth Targeting VEGFA. Frontiers in Endocrinology, 2020, 11, 566761 Protective effect of c-Myc/Rab7a signal pathway in glioblastoma cells under hypoxia. Annals of Translational Medicine, 2020, 8, 283 Recent experimental explorations of non-classical nucleation. CrystEngComm, 2020, 22, 4057-4073 Polydopamine Promotes Dentin Remineralization via Interfacial Control. ACS Biomaterials Science and Engineering, 2020, 6, 3327-3334 Pacemaker implantation in patients with major depression, should it be of concern? A case report	5.7 3.2 3.3 5.5	2 17 9
142 141 140	SDF-1 MicroRNA-134 Axis Regulates Nonfunctioning Pituitary Neuroendocrine Tumor Growth Targeting VEGFA. Frontiers in Endocrinology, 2020, 11, 566761 Protective effect of c-Myc/Rab7a signal pathway in glioblastoma cells under hypoxia. Annals of Translational Medicine, 2020, 8, 283 Recent experimental explorations of non-classical nucleation. CrystEngComm, 2020, 22, 4057-4073 Polydopamine Promotes Dentin Remineralization via Interfacial Control. ACS Biomaterials Science and Engineering, 2020, 6, 3327-3334 Pacemaker implantation in patients with major depression, should it be of concern? A case report and literature review. BMC Cardiovascular Disorders, 2020, 20, 279	5.7 3.2 3.3 5.5	2 17 9

135	Shape-preserving amorphous-to-crystalline transformation of CaCO revealed by in situ TEM. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 3397-3404	11.5	44
134	Programmed Cell Deaths and Potential Crosstalk With Blood-Brain Barrier Dysfunction After Hemorrhagic Stroke. <i>Frontiers in Cellular Neuroscience</i> , 2020 , 14, 68	6.1	35
133	Promotion effect of immobilized chondroitin sulfate on intrafibrillar mineralization of collagen. <i>Carbohydrate Polymers</i> , 2020 , 229, 115547	10.3	14
132	OrganicIhorganic Copolymerization for a Homogenous Composite without an Interphase Boundary. <i>Angewandte Chemie</i> , 2020 , 132, 2087-2091	3.6	
131	Biomimetic Mineralized OrganicIhorganic Hybrid Macrofiber with Spider Silk-Like Supertoughness. <i>Advanced Functional Materials</i> , 2020 , 30, 1908556	15.6	40
130	Organic-Inorganic Copolymerization for a Homogenous Composite without an Interphase Boundary. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 2071-2075	16.4	31
129	The Role of Exosomal microRNAs and Oxidative Stress in Neurodegenerative Diseases. <i>Oxidative Medicine and Cellular Longevity</i> , 2020 , 2020, 3232869	6.7	19
128	Chameleon-Inspired Stress-Responsive Multicolored Ultratough Films. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2020 , 12, 36731-36739	9.5	4
127	Muscle-like Ultratough Hybrid Hydrogel Constructed by Heterogeneous Inorganic Polymerization on an Organic Network. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 ,	9.5	9
126	HIF-1#Mediates TRAIL-Induced Neuronal Apoptosis Regulating DcR1 Expression Following Traumatic Brain Injury. <i>Frontiers in Cellular Neuroscience</i> , 2020 , 14, 192	6.1	4
125	The formation and shape transformation mechanism of a triangular Au nanoplate revealed by liquid-cell TEM. <i>Nanoscale</i> , 2020 , 12, 19592-19596	7.7	3
124	Smart Nanosacrificial Layer on the Bone Surface Prevents Osteoporosis through Acid-Base Neutralization Regulated Biocascade Effects. <i>Journal of the American Chemical Society</i> , 2020 , 142, 1754	13 ⁻¹⁶ 75	56 ¹⁰
123	Rational Design of a Replication-Competent and Inheritable Magnetic Viruses for Targeting Biomedical Applications. <i>Small</i> , 2020 , 16, e2002435	11	3
122	Calcium Phosphate Nanocluster-Loaded Injectable Hydrogel for Bone Regeneration <i>ACS Applied Bio Materials</i> , 2019 , 2, 4408-4417	4.1	6
121	Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. <i>Science Advances</i> , 2019 , 5, eaaw9569	14.3	81
120	Therapeutic Management of Demineralized Dentin Surfaces Using a Mineralizing Adhesive To Seal and Mineralize Dentin, Dentinal Tubules, and Odontoblast Processes. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 5481-5488	5.5	3
119	Phosphorylated chitosan to promote biomimetic mineralization of type I collagen as a strategy for dentin repair and bone tissue engineering. <i>New Journal of Chemistry</i> , 2019 , 43, 2002-2010	3.6	18
118	Quantitative investigation of the formation and growth of palladium fractal nanocrystals by liquid-cell transmission electron microscopy. <i>Chemical Communications</i> , 2019 , 55, 8186-8189	5.8	5

117	Regulations of organism by materials: a new understanding of biological inorganic chemistry. Journal of Biological Inorganic Chemistry, 2019 , 24, 467-481	3.7	11
116	Size effect of nano-hydroxyapatite on proliferation of odontoblast-like MDPC-23 cells. <i>Dental Materials Journal</i> , 2019 , 38, 534-539	2.5	7
115	Revealing the Cluster-Cloud and Its Role in Nanocrystallization. <i>Advanced Materials</i> , 2019 , 31, e1808225	5 24	26
114	Understanding Anisotropic Growth of Au Penta-Twinned Nanorods by Liquid Cell Transmission Electron Microscopy. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1443-1449	6.4	10
113	A Biomimetic Model for Mineralization of Type-I Collagen Fibrils. <i>Methods in Molecular Biology</i> , 2019 , 1944, 39-54	1.4	6
112	Osteoporotic Bone Recovery by a Highly Bone-Inductive Calcium Phosphate Polymer-Induced Liquid-Precursor. <i>Advanced Science</i> , 2019 , 6, 1900683	13.6	38
111	Fabrication of collagen membranes with different intrafibrillar mineralization degree as a potential use for GBR. <i>Materials Science and Engineering C</i> , 2019 , 104, 109959	8.3	18
110	Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction. <i>Theranostics</i> , 2019 , 9, 7403-7416	12.1	66
109	Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced. <i>Nanoscale</i> , 2019 , 11, 22748-22761	7.7	11
108	Anisotropic Epitaxial Behavior in the Amorphous Phase-Mediated Hydroxyapatite Crystallization Process: A New Understanding of Orientation Control. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 7611-7616	6.4	9
107	Crosslinking ionic oligomers as conformable precursors to calcium carbonate. <i>Nature</i> , 2019 , 574, 394-39	8 50.4	84
106	Improvement in the Photobiological Hydrogen Production of Aggregated Chlorella by Dimethyl Sulfoxide. <i>ChemBioChem</i> , 2018 , 19, 669-673	3.8	10
105	Could a mineralized state of avian flu virus be dangerous to humans?. Future Virology, 2018, 13, 79-81	2.4	2
104	Biomineralization State of Viruses and Their Biological Potential. <i>Chemistry - A European Journal</i> , 2018 , 24, 11518-11529	4.8	16
103	Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control. <i>Advanced Materials</i> , 2018 , 30, 1704876	24	88
102	Nanoparticle Counting by Microscopic Digital Detection: Selective Quantitative Analysis of Exosomes via Surface-Anchored Nucleic Acid Amplification. <i>Analytical Chemistry</i> , 2018 , 90, 6556-6562	7.8	41
101	Amorphous Phase Mediated Crystallization: Fundamentals of Biomineralization. <i>Crystals</i> , 2018 , 8, 48	2.3	28
100	Therapeutic Potential of Biomineralization-Based Engineering. Advanced Therapeutics, 2018, 1, 1800079	94.9	10

99	A novel fluorescent adhesive-assisted biomimetic mineralization. <i>Nanoscale</i> , 2018 , 10, 18980-18987	7.7	18
98	Artificial Organelles: Nanomaterial-Based Organelles Protect Normal Cells against Chemotherapy-Induced Cytotoxicity (Adv. Mater. 27/2018). <i>Advanced Materials</i> , 2018 , 30, 1870202	24	2
97	In Situ Liquid Cell TEM Reveals Bridge-Induced Contact and Fusion of Au Nanocrystals in Aqueous Solution. <i>Nano Letters</i> , 2018 , 18, 6551-6556	11.5	51
96	Synergic Effect of Sr2+ and Mg2+ on the Stabilization of Amorphous Calcium Phosphate. <i>Crystal Growth and Design</i> , 2018 , 18, 6054-6060	3.5	11
95	Nanomaterial-Based Organelles Protect Normal Cells against Chemotherapy-Induced Cytotoxicity. <i>Advanced Materials</i> , 2018 , 30, e1801304	24	29
94	Biomineralization: From Material Tactics to Biological Strategy. <i>Advanced Materials</i> , 2017 , 29, 1605903	24	140
93	Protection of Photosynthetic Algae against Ultraviolet Radiation by One-Step CeO Shellization. <i>Langmuir</i> , 2017 , 33, 2454-2459	4	21
92	Switchable Chiral Selection of Aspartic Acids by Dynamic States of Brushite. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8562-8569	16.4	12
91	Self-Etch Adhesive as a Carrier for ACP Nanoprecursors to Deliver Biomimetic Remineralization. <i>ACS Applied Materials & Deliver Biomimetic Remineralization</i> . 9, 17710-17717	9.5	20
90	Prevention of Cyanobacterial Blooms Using Nanosilica: A Biomineralization-Inspired Strategy. <i>Environmental Science & Environmental Science & Environm</i>	10.3	18
89	Biomimetic inorganic camouflage circumvents antibody-dependent enhancement of infection. <i>Chemical Science</i> , 2017 , 8, 8240-8246	9.4	13
88	Innentitelbild: Mineralized State of the Avian Influenza Virus in the Environment (Angew. Chem. 42/2017). <i>Angewandte Chemie</i> , 2017 , 129, 12968-12968	3.6	
87	Mineralized State of the Avian Influenza Virus in the Environment. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12908-12912	16.4	15
86	Mineralized State of the Avian Influenza Virus in the Environment. <i>Angewandte Chemie</i> , 2017 , 129, 1308	88 . 430	92
85	Total morphosynthesis of biomimetic prismatic-type CaCO thin films. <i>Nature Communications</i> , 2017 , 8, 1398	17.4	38
84	Effect of the aggregation state of amorphous calcium phosphate on hydroxyapatite nucleation kinetics. <i>RSC Advances</i> , 2017 , 7, 25497-25503	3.7	22
83	Long-term Effect of Biomineralized Insulin Nanoparticles on Type 2 Diabetes Treatment. <i>Theranostics</i> , 2017 , 7, 4301-4312	12.1	10
82	In⊡ivo dual-targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier. <i>Biomaterials</i> , 2016 , 75, 71-81	15.6	51

81	InnenrEktitelbild: Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress (Angew. Chem. 41/2016). <i>Angewandte Chemie</i> , 2016 , 128, 13105-13105	3.6	
80	Biomineralized vaccine nanohybrid for needle-free intranasal immunization. <i>Biomaterials</i> , 2016 , 106, 286-94	15.6	23
79	Evolution from Classical to Non-classical Aggregation-Based Crystal Growth of Calcite by Organic Additive Control. <i>Langmuir</i> , 2016 , 32, 8999-9004	4	12
78	Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12836-40	16.4	24
77	Cells Recognize and Prefer Bone-like Hydroxyapatite: Biochemical Understanding of Ultrathin Mineral Platelets in Bone. <i>ACS Applied Materials & Discrete Section</i> , 8, 29997-30004	9.5	19
76	A Drug-Free Tumor Therapy Strategy: Cancer-Cell-Targeting Calcification. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 5225-9	16.4	62
75	Glutaraldehyde-induced remineralization improves the mechanical properties and biostability of dentin collagen. <i>Materials Science and Engineering C</i> , 2016 , 67, 657-665	8.3	24
74	Improvement of Biological Organisms Using Functional Material Shells. <i>Advanced Functional Materials</i> , 2016 , 26, 1862-1880	15.6	60
73	Vaccine Engineering with Dual-Functional Mineral Shell: A Promising Strategy to Overcome Preexisting Immunity. <i>Advanced Materials</i> , 2016 , 28, 694-700	24	33
72	A Drug-Free Tumor Therapy Strategy: Cancer-Cell-Targeting Calcification. <i>Angewandte Chemie</i> , 2016 , 128, 5311-5315	3.6	10
71	Less is more: silicate in the crystallization of hydroxyapatite in simulated body fluids. CrystEngComm, 2016 , 18, 379-383	3.3	16
70	Robust vaccine formulation produced by assembling a hybrid coating of polyethyleneimine-silica. <i>Chemical Science</i> , 2016 , 7, 1753-1759	9.4	21
69	Intracellular delivery of biomineralized monoclonal antibodies to combat viral infection. <i>Chemical Communications</i> , 2016 , 52, 1879-82	5.8	9
68	Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress. <i>Angewandte Chemie</i> , 2016 , 128, 13028-13032	3.6	3
67	Alumina-encapsulated vaccine formulation with improved thermostability and immunogenicity. <i>Chemical Communications</i> , 2016 , 52, 6447-50	5.8	14
66	High efficient multifunctional Ag3PO4 loaded hydroxyapatite nanowires for water treatment. <i>Journal of Hazardous Materials</i> , 2015 , 299, 379-87	12.8	39
65	The effect of amorphous calcium phosphate on protein protection against thermal denaturation. <i>Chemical Communications</i> , 2015 , 51, 8705-7	5.8	20
64	Solvothermal synthesis of Etricalcium phosphate porous nanospheres by using organic phosphorus source and their biomedical potentials. <i>RSC Advances</i> , 2015 , 5, 23958-23964	3.7	10

(2013-2015)

63	Virus capture and destruction by label-free graphene oxide for detection and disinfection applications. <i>Small</i> , 2015 , 11, 1171-6	11	91
62	Overcoming multiple drug resistance by spatial-temporal synchronization of epirubicin and pooled siRNAs. <i>Small</i> , 2015 , 11, 1775-81	11	12
61	Silicification-Induced Cell Aggregation for the Sustainable Production of H2 under Aerobic Conditions. <i>Angewandte Chemie</i> , 2015 , 127, 12129-12133	3.6	21
60	Silicification-induced cell aggregation for the sustainable production of H2 under aerobic conditions. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11961-5	16.4	43
59	Phase-controlled crystallization of amorphous calcium carbonate in ethanol-water binary solvents. <i>Crystal Research and Technology</i> , 2015 , 50, 312-318	1.3	11
58	Hydrated silica exterior produced by biomimetic silicification confers viral vaccine heat-resistance. <i>ACS Nano</i> , 2015 , 9, 799-808	16.7	43
57	Amorphous calcium phosphate phase-mediated crystal nucleation kinetics and pathway. <i>Faraday Discussions</i> , 2015 , 179, 451-61	3.6	45
56	Antigenically shielded universal red blood cells by polydopamine-based cell surface engineering. <i>Chemical Science</i> , 2014 , 5, 3463-3468	9.4	61
55	Toward a Detailed Understanding of Magnesium Ions on Hydroxyapatite Crystallization Inhibition. <i>Crystal Growth and Design</i> , 2014 , 14, 763-769	3.5	102
54	Biomimetic promotion of dentin remineralization using l-glutamic acid: inspiration from biomineralization proteins. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 4544-4553	7-3	39
53	Nanomodification of living organisms by biomimetic mineralization. <i>Nano Research</i> , 2014 , 7, 1404-1428	10	34
52	Nano regulation of cisplatin chemotherapeutic behaviors by biomineralization controls. <i>Small</i> , 2014 , 10, 3644-9	11	15
51	Stabilizing amorphous calcium phosphate phase by citrate adsorption. <i>CrystEngComm</i> , 2014 , 16, 1864-1	867	49
50	Biomimetic graphene oxideflydroxyapatite composites via in situ mineralization and hierarchical assembly. <i>RSC Advances</i> , 2014 , 4, 25398-25403	3.7	29
49	Hierarchical structure and mechanical properties of remineralized dentin. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2014 , 40, 297-306	4.1	16
48	Impact of interfacial high-density water layer on accurate estimation of adsorption free energy by Jarzynskiß equality. <i>Journal of Chemical Physics</i> , 2014 , 140, 034706	3.9	7
47	Faster nucleation at lower pH: amorphous phase mediated nucleation kinetics. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12530-3	3.6	29
46	Overcoming cisplatin resistance in chemotherapy by biomineralization. <i>Chemical Communications</i> , 2013 , 49, 4932-4	5.8	22

45	Alleviation of high light-induced photoinhibition in cyanobacteria by artificially conferred biosilica shells. <i>Chemical Communications</i> , 2013 , 49, 7525-7	5.8	65
44	Ultra-high payload of doxorubicin and pH-responsive drug release in CuS nanocages for a combination of chemotherapy and photothermal therapy. <i>RSC Advances</i> , 2013 , 3, 23133	3.7	22
43	Hydration layer structures on calcite facets and their roles in selective adsorptions of biomolecules: a molecular dynamics study. <i>Journal of Chemical Physics</i> , 2013 , 139, 234705	3.9	36
42	Rational design of thermostable vaccines by engineered peptide-induced virus self-biomineralization under physiological conditions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 7619-24	11.5	107
41	Lamellar organicIhorganic architecture via classical screw growth. CrystEngComm, 2012, 14, 7184	3.3	6
40	Eggshell-Inspired Biomineralization Generates Vaccines that Do Not Require Refrigeration. <i>Angewandte Chemie</i> , 2012 , 124, 10728-10731	3.6	16
39	Eggshell-inspired biomineralization generates vaccines that do not require refrigeration. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 10576-9	16.4	37
38	Biomineralization-based virus shell-engineering: towards neutralization escape and tropism expansion. <i>Advanced Healthcare Materials</i> , 2012 , 1, 443-9	10.1	45
37	Virus-Shell Engineering: Biomineralization-Based Virus Shell-Engineering: Towards Neutralization Escape and Tropism Expansion (Adv. Healthcare Mater. 4/2012). <i>Advanced Healthcare Materials</i> , 2012 , 1, 366-366	10.1	
36	Unique roles of acidic amino acids in phase transformation of calcium phosphates. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 1151-7	3.4	45
35	Mechanism of promoted dipeptide formation on hydroxyapatite crystal surfaces. <i>Science Bulletin</i> , 2011 , 56, 633-639		10
34	Bio-inspired enamel repair via Glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics. <i>Advanced Materials</i> , 2011 , 23, 4695-701	24	83
33	Guarding embryo development of zebrafish by shell engineering: a strategy to shield life from ozone depletion. <i>PLoS ONE</i> , 2010 , 5, e9963	3.7	25
32	Preparing nano-calcium phosphate particles via a biologically friendly pathway. <i>Biomedical Materials (Bristol)</i> , 2010 , 5, 041001	3.5	11
31	Calcium Phosphate Nanoparticles in Biomineralization and Biomaterials 2010,		2
30	Mystery of the transformation from amorphous calcium phosphate to hydroxyapatite. <i>Chemical Communications</i> , 2010 , 46, 7415-7	5.8	81
29	Influence of viscosity on the phase transformation of amorphous calcium carbonate in fluids: An understanding of the medium effect in biomimetic mineralization. <i>Science China Chemistry</i> , 2010 , 53, 2208-2214	7.9	4
28	Cellular shellization: surface engineering gives cells an exterior. <i>BioEssays</i> , 2010 , 32, 698-708	4.1	28

(2005-2010)

27	Functional single-virus-polyelectrolyte hybrids make large-scale applications of viral nanoparticles more efficient. <i>Small</i> , 2010 , 6, 351-4	11	18
26	Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 22096-101	11.5	106
25	Phytochemical investigation and cytotoxic evaluation of the components of the medicinal plant Ligularia atroviolacea. <i>Chemistry and Biodiversity</i> , 2009 , 6, 1053-65	2.5	8
24	Preparation of Calcite and Aragonite Complex Layer Materials Inspired from Biomineralization. <i>Crystal Growth and Design</i> , 2009 , 9, 3095-3099	3.5	27
23	Calcium phosphate nanoparticles in biomineralization and biomaterials. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3775		232
22	Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. <i>Journal of Materials Chemistry</i> , 2008 , 18, 4079		147
21	Colour tuning of coreBhell fluorescent materials. Journal of Materials Chemistry, 2008, 18, 5363		11
20	Evolution of Amorphous Calcium Phosphate to Hydroxyapatite Probed by Gold Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 14929-14933	3.8	47
19	Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 3560-4	16.4	168
18	Yeast Cells with an Artificial Mineral Shell: Protection and Modification of Living Cells by Biomimetic Mineralization. <i>Angewandte Chemie</i> , 2008 , 120, 3616-3620	3.6	40
17	Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4690		133
16	Role of hydroxyapatite nanoparticle size in bone cell proliferation. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3780		296
15	Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 13410-8	3.4	125
14	Inhibition of proliferation of osteosarcoma by nano calcium phosphates: potential hard tissue repair after tumor extraction. <i>Frontiers of Materials Science in China</i> , 2007 , 1, 30-34		3
13	Molecular simulation of water behaviors on crystal faces of hydroxyapatite. <i>Frontiers of Chemistry in China: Selected Publications From Chinese Universities</i> , 2007 , 2, 156-163		22
12	Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level. <i>Langmuir</i> , 2007 , 23, 8972-81	4	109
11	Control of biomineralization dynamics by interfacial energies. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 3698-702	16.4	71
10	Control of Biomineralization Dynamics by Interfacial Energies. <i>Angewandte Chemie</i> , 2005 , 117, 3764-37	6§ .6	3

9	Biological Modification in the Brushite Crystallization. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 823, W7.2.1		1	
8	Dissolution at the nanoscale: self-preservation of biominerals. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2697-701	16.4	90	
7	Dissolution at the Nanoscale: Self-Preservation of Biominerals. <i>Angewandte Chemie</i> , 2004 , 116, 2751-27	5,5 6	17	
6	Dissolution of crystallites: surface energetic control and size effects. <i>ChemPhysChem</i> , 2004 , 5, 688-96	3.2	39	
5	Size-effects in the dissolution of hydroxyapatite: an understanding of biological demineralization. Journal of Materials Chemistry, 2004 , 14, 2341		54	
4	Constant composition dissolution of mixed phases. II. Selective dissolution of calcium phosphates. Journal of Colloid and Interface Science, 2003 , 260, 379-84	9.3	47	
3	New mechanism for the dissolution of sparingly soluble minerals. <i>Pure and Applied Chemistry</i> , 2002 , 74, 1851-1857	2.1	22	
2	Mechanism of dissolution of sparingly soluble electrolytes. <i>Journal of the American Chemical Society</i> , 2001 , 123, 5437-43	16.4	78	
1	Kinetics of Dissolution of Tricalcium Phosphate. <i>Langmuir</i> , 2001 , 17, 3480-3485	4	58	