Massimo Migliori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1329234/publications.pdf

Version: 2024-02-01

	172457	233421
2,227	29	45
citations	h-index	g-index
0.6	0.6	2145
86	86	2145
docs citations	times ranked	citing authors
	citations 86	2,227 29 citations h-index 86 86

#	Article	IF	CITATIONS
1	ZSM-5 zeolites performance assessment in catalytic pyrolysis of PVC-containing real WEEE plastic wastes. Catalysis Today, 2022, 390-391, 210-220.	4.4	34
2	ZSM-5@Sil-1 core shell: Effect of synthesis method over textural and catalytic properties. Catalysis Today, 2022, 390-391, 176-184.	4.4	6
3	Zeolite templated carbon from Beta replica as metal-free electrocatalyst for CO2 reduction. Applied Materials Today, 2022, 26, 101383.	4.3	1
4	Passivated Surface of High Aluminum Containing ZSM-5 by Silicalite-1: Synthesis and Application in Dehydration Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 4839-4848.	6.7	8
5	Electromagnetic induction-assisted pyrolysis of pre-treated MSW: Modelling and experimental analysis. Fuel Processing Technology, 2022, 233, 107297.	7.2	3
6	Steam Reforming of Bioethanol Using Metallic Catalysts on Zeolitic Supports: An Overview. Catalysts, 2022, 12, 617.	3.5	9
7	High performance of Au/ZTC based catalysts for the selective oxidation of bio-derivative furfural to 2-furoic acid. Catalysis Communications, 2021, 149, 106234.	3.3	30
8	MFI vs. FER zeolite during methanol dehydration to dimethyl ether: The crystal size plays a key role. Catalysis Communications, 2021, 149, 106214.	3.3	25
9	Purification of Wastewater from Biomass-Derived Syngas Scrubber Using Biochar and Activated Carbons. International Journal of Environmental Research and Public Health, 2021, 18, 4247.	2.6	12
10	Supramolecular assembly of l-Lysine on ZSM-5 zeolites with different Si/Al ratio. Microporous and Mesoporous Materials, 2021, 323, 111183.	4.4	2
11	Towards the Circular Economy of Rare Earth Elements: Lanthanum Leaching from Spent FCC Catalyst by Acids. Processes, 2021, 9, 1369.	2.8	6
12	Dry Mesophilic Anaerobic Digestion of Separately Collected Organic Fraction of Municipal Solid Waste: Two-Year Experience in an Industrial-Scale Plant. Processes, 2021, 9, 213.	2.8	9
13	Interaction effects between CuO-ZnO-ZrO2 methanol phase and zeolite surface affecting stability of hybrid systems during one-step CO2 hydrogenation to DME. Catalysis Today, 2020, 345, 175-182.	4.4	47
14	The elastic behavior of zeolitic frameworks: The case of MFI type zeolite under high-pressure methanol intrusion. Catalysis Today, 2020, 345, 88-96.	4.4	5
15	Zeolite-assisted etherification of glycerol with butanol for biodiesel oxygenated additives production. Journal of Energy Chemistry, 2020, 48, 136-144.	12.9	28
16	Supercritical water gasification of biomass and agro-food residues: Energy assessment from modelling approach. Renewable Energy, 2020, 150, 624-636.	8.9	38
17	The Effect of Zeolite Features on the Dehydration Reaction of Methanol to Dimethyl Ether: Catalytic Behaviour and Kinetics. Materials, 2020, 13, 5577.	2.9	9
18	Promoting Direct CO2 Conversion to DME over Zeolite-based Hybrid Catalysts. Petroleum Chemistry, 2020, 60, 508-515.	1.4	8

#	Article	IF	Citations
19	Weakly acidic zeolites: A review on uses and relationship between nature of the active sites and catalytic behaviour. Microporous and Mesoporous Materials, 2020, 300, 110157.	4.4	16
20	CuZnZr-Zeolite Hybrid Grains for DME Synthesis: New Evidence on the Role of Metal-Acidic Features on the Methanol Conversion Step. Catalysts, 2020, 10, 671.	3.5	7
21	Methanol Conversion to Dimethyl Ether in Catalytic Zeolite Membrane Reactors. ACS Sustainable Chemistry and Engineering, 2020, 8, 10471-10479.	6.7	34
22	New synthesis routes and catalytic applications of ferrierite crystals. Part 1: 1,8-Diaminooctane as a new OSDA. Microporous and Mesoporous Materials, 2020, 296, 109987.	4.4	8
23	New synthesis routes and catalytic applications of ferrierite crystals. Part 2: The effect of OSDA type on zeolite properties and catalysis. Microporous and Mesoporous Materials, 2020, 296, 109988.	4.4	7
24	Desilicated ZSM-5 zeolite: Catalytic performances assessment in methanol to DME dehydration. Microporous and Mesoporous Materials, 2020, 302, 110198.	4.4	37
25	Phenol Removal from Water with Carbons: An Experimental Investigation. Tecnica Italiana, 2020, 64, 143-148.	0.2	2
26	Ferrierite vs. \hat{l}^3 -Al2O3: The superiority of zeolites in terms of water-resistance in vapour-phase dehydration of methanol to dimethyl ether. Journal of Energy Chemistry, 2019, 30, 162-169.	12.9	43
27	Pilot Plant Data Assessment in Anaerobic Digestion of Organic Fraction of Municipal Waste Solids. Processes, 2019, 7, 54.	2.8	20
28	Reassembly mechanism in Fe-Silicalite during NH4OH post-treatment and relation with the acidity and catalytic reactivity. Applied Catalysis A: General, 2019, 580, 186-196.	4.3	22
29	Hierarchical Low Si/Al Ratio Ferrierite Zeolite by Sequential Postsynthesis Treatment: Catalytic Assessment in Dehydration Reaction of Methanol. Journal of Chemistry, 2019, 2019, 1-9.	1.9	95
30	Catalytic application of ferrierite nanocrystals in vapour-phase dehydration of methanol to dimethyl ether. Applied Catalysis B: Environmental, 2019, 243, 273-282.	20.2	65
31	Direct <i>versus</i> acetalization routes in the reaction network of catalytic HMF etherification. Catalysis Science and Technology, 2018, 8, 1304-1313.	4.1	33
32	Acidity control of zeolite functionality on activity and stability of hybrid catalysts during DME production via CO2 hydrogenation. Journal of CO2 Utilization, 2018, 24, 398-406.	6.8	71
33	Methanol conversion over ZSM-12, ZSM-22 and EU-1 zeolites: from DME to hydrocarbons production. Catalysis Today, 2018, 304, 39-50.	4.4	33
34	Catalytic microreactor with electrodeposited hierarchically nanostructured nickel coatings for gas-phase fluorination reactions. Journal of Fluorine Chemistry, 2018, 205, 22-29.	1.7	2
35	Comparison of H \pm and NH 4 \pm forms of zeolites as acid catalysts for HMF etherification. Catalysis Today, 2018, 304, 97-102.	4.4	36
36	In Situ FT-IR Characterization of CuZnZr/Ferrierite Hybrid Catalysts for One-Pot CO2-to-DME Conversion. Materials, 2018, 11, 2275.	2.9	28

#	Article	IF	CITATIONS
37	New insights about coke deposition in methanol-to-DME reaction over MOR-, MFI- and FER-type zeolites. Journal of Industrial and Engineering Chemistry, 2018, 68, 196-208.	5.8	41
38	CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives. Molecules, 2018, 23, 31.	3.8	133
39	From 1-D to 3-D zeolite structures: performance assessment in catalysis of vapour-phase methanol dehydration to DME. Microporous and Mesoporous Materials, 2017, 243, 102-111.	4.4	54
40	Supercritical Water Gasification of Scenedesmus Dimorphus µ-algae. International Journal of Chemical Reactor Engineering, 2017, 15, .	1.1	3
41	Direct CO 2 -to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield. Journal of CO2 Utilization, 2017, 18, 353-361.	6.8	101
42	Modelling of adsorption of textile dyes over multi-walled carbon nanotubes: Equilibrium and kinetic. Chinese Journal of Chemical Engineering, 2017, 25, 523-532.	3.5	42
43	The effect of FER zeolite acid sites in methanol-to-dimethyl-ether catalytic dehydration. Journal of Energy Chemistry, 2017, 26, 406-415.	12.9	38
44	Simplified Kinetic Modeling of Propane Aromatization over Ga-ZSM-5 Zeolites: Comparison with Experimental Data. Industrial & Engineering Chemistry Research, 2017, 56, 10309-10317.	3.7	15
45	Catalytic behavior in propane aromatization using GA-MFI catalyst. Chinese Journal of Chemical Engineering, 2017, 25, 1863-1870.	3.5	9
46	Municipal waste leachate conversion via catalytic supercritical water gasification process. Fuel, 2017, 206, 155-161.	6.4	44
47	Synthesis and Catalytic Performances Evaluation of FER-Based Catalysts with Different Acidity in Methanol Conversion to DME. Advanced Science Letters, 2017, 23, 5847-5850.	0.2	1
48	Study of Adsorption Behavior of Multi-Walled Carbon Nanotubes Towards Dyes Applied in Textile Applications. Advanced Science Letters, 2017, 23, 5851-5854.	0.2	5
49	Catalytic features of CuZnZr–zeolite hybrid systems for the direct CO2-to-DME hydrogenation reaction. Catalysis Today, 2016, 277, 48-54.	4.4	68
50	Process Innovation Via Supercritical Water Gasification to Improve the Conventional Plants Performance in Treating Highly Humid Biomass. Waste and Biomass Valorization, 2016, 7, 1289-1295.	3.4	14
51	Glucose gasification in super-critical water conditions for both syngas production and green chemicals with a continuous process. Renewable Energy, 2016, 91, 451-455.	8.9	26
52	HMF etherification using NH ₄ -exchanged zeolites. New Journal of Chemistry, 2016, 40, 4300-4306.	2.8	18
53	Dimethyl ether synthesis via methanol dehydration: Effect of zeolite structure. Applied Catalysis A: General, 2015, 502, 215-220.	4.3	86
54	Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation. Applied Catalysis B: Environmental, 2015, 176-177, 522-531.	20.2	119

#	Article	IF	CITATIONS
55	The role of acid sites induced by defects in the etherification of HMF on Silicalite-1 catalysts. Journal of Catalysis, 2015, 330, 558-568.	6.2	72
56	Methanol to dimethylether on H-MFI catalyst: The influence of the Si/Al ratio on kinetic parameters. Catalysis Today, 2014, 227, 138-143.	4.4	35
57	Glucose gasification in near critical water conditions for both syngas production and green chemicals with a continuous process. Fuel, 2014, 115, 41-45.	6.4	16
58	Pressure and time effect over semi-continuous gasification of zootechnical sludge near critical condition of water for green chemicals production. Fuel, 2014, 136, 172-176.	6.4	7
59	Kinetic Analysis of Methanol to Dimethyl Ether Reaction over H-MFI Catalyst. Industrial & Dimethyl Ether Reaction over H-MFI Catalys	3.7	47
60	Modelling of dough formation process and structure evolution during farinograph test. International Journal of Food Science and Technology, 2013, 48, 121-127.	2.7	14
61	Semi-continuous biomass gasification with water under sub critical conditions. Fuel, 2013, 112, 249-253.	6.4	6
62	Biogas upgrading via membrane process: Modelling of pilot plant scale and the end uses for the grid injection. Fuel, 2013, 107, 585-592.	6.4	68
63	Experimental and simulation results for biomethane production using peek hollow fiber membrane. Fuel, 2013, 112, 489-493.	6.4	30
64	The Effect of Waxes Addition on Rheological Properties of O/W Concentrated Model Emulsions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2012, 34, 851-857.	2.3	0
65	Modelling flow behaviour of dairy foams through a nozzle. Journal of Food Engineering, 2012, 109, 218-229.	5.2	4
66	Effect of water addition on pectin recovery from solution in centrifugal separation process. International Journal of Food Science and Technology, 2011, 46, 116-121.	2.7	4
67	RHEOLOGICAL PROPERTIES OF BATTER DOUGH: EFFECT OF EGG LEVEL. Journal of Food Process Engineering, 2011, 34, 1266-1281.	2.9	15
68	Rheological Characterisation of Dairy Emulsions For Cold Foam Applications. International Journal of Food Properties, 2011, 14, 786-798.	3.0	5
69	The influence of formulation and cooling rate on the rheological properties of chocolate. European Food Research and Technology, 2010, 231, 821-828.	3.3	31
70	Original article: Innovation in fig syrup production process: a rheological approach. International Journal of Food Science and Technology, 2010, 45, 1947-1955.	2.7	5
71	Effect of pentosan addition on dough rheological properties. Food Research International, 2010, 43, 2315-2320.	6.2	22
72	Rheological Study of O/W Concentrated Model Emulsions for Heavy Crude Oil Transportation. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2010, 33, 72-79.	2.3	4

#	Article	IF	CITATIONS
73	Characterisation of dairy emulsions by NMR and rheological techniques. Food Hydrocolloids, 2009, 23, 619-628.	10.7	58
74	Rheological Study of Batter Dough for Yorkshire Pudding Production. AIP Conference Proceedings, 2008, , .	0.4	1
75	Olive Oil Based Emulsions in Frozen Puff Pastry Production. AIP Conference Proceedings, 2008, , .	0.4	4
76	Influence of Fat Content on Chocolate Rheology. AIP Conference Proceedings, 2008, , .	0.4	4
77	Viscosity of Multicomponent Solutions of Simple and Complex Sugars in Water. Journal of Chemical & Lamp; Engineering Data, 2007, 52, 1347-1353.	1.9	26
78	Modelling of high quality pasta drying: mathematical model and validation. Journal of Food Engineering, 2005, 69, 387-397.	5.2	33
79	Modelling of high quality pasta drying: quality indices and industrial application. Journal of Food Engineering, 2005, 71, 242-251.	5.2	24
80	THE USE OF RHEOLOGY TO CHARACTERIZE FLOW BEHAVIOR OF LIQUORICE SOLUTIONS. Journal of Food Process Engineering, 2004, 27, 464-475.	2.9	1
81	Filled-snacks production by co-extrusion-cooking. Part 3. A rheological-based method to compare filler processing properties. Journal of Food Engineering, 2002, 54, 227-240.	5.2	24
82	A rheological approach to drill-in fluids optimization. Rheologica Acta, 2001, 40, 196-203.	2.4	6
83	A simple rheological model to predict filled fresh pasta failure during heat treatment. Journal of Food Engineering, 2001, 48, 7-18.	5.2	3