List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1329178/publications.pdf Version: 2024-02-01

FREAN YÃOECE

#	Article	lF	CITATIONS
1	A New Grounded Capacitance Multiplier Using a Single ICFOA and a Grounded Capacitor. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 729-733.	2.2	11
2	A Mixed-Mode filter with DVCCs and grounded passive components only. AEU - International Journal of Electronics and Communications, 2022, 144, 154063.	1.7	7
3	First-Order All-Pass Filters Comprising One Modified DDCC Journal of Circuits, Systems and Computers, 2022, 31, .	1.0	4
4	A first-order universal filter including a grounded capacitor and two CFOAs. Analog Integrated Circuits and Signal Processing, 2022, 112, 379-390.	0.9	12
5	A New Active Device Namely S-CCI and Its Applications: Simulated Floating Inductor and Quadrature Oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 3554-3564.	3.5	3
6	CCII-based simulated floating inductor and floating capacitance multiplier. Analog Integrated Circuits and Signal Processing, 2022, 112, 417-432.	0.9	5
7	CFOA-Based Floating Simulator Suitable for Realizing Frequency Dependent Negative Resistor. , 2022, , .		1
8	Supplementary DDCC+ based universal filter with grounded passive elements. AEU - International Journal of Electronics and Communications, 2021, 132, 153652.	1.7	12
9	DVCC+ Based Immittance Function Simulators Including Grounded Passive Elements Only. Journal of Circuits, Systems and Computers, 2021, 30, .	1.0	4
10	A New Simulated Inductor with Reduced Series Resistor Using a Single VCII±. Electronics (Switzerland), 2021, 10, 1693.	1.8	18
11	A new first-order universal filter consisting of two ICCIIÂ+Âs and a grounded capacitor. AEU - International Journal of Electronics and Communications, 2021, 137, 153802.	1.7	19
12	A new CFOA based grounded capacitance multiplier. AEU - International Journal of Electronics and Communications, 2020, 115, 153034.	1.7	24
13	MOSFETâ€C â€based grounded active inductors with electronically tunable properties. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22274.	0.8	1
14	A secondâ€generation voltage conveyor (VCII)–based simulated grounded inductor. International Journal of Circuit Theory and Applications, 2020, 48, 1180-1193.	1.3	38
15	Supplementary CCII based second-order universal filter and quadrature oscillators. AEU - International Journal of Electronics and Communications, 2020, 118, 153138.	1.7	13
16	Synthetic Transformer Design Using Commercially Available Active Components. Circuits, Systems, and Signal Processing, 2020, 39, 3770-3786.	1.2	5
17	DVCC+ based multifunction and universal filters with the high input impedance features. Analog Integrated Circuits and Signal Processing, 2020, 103, 325-335.	0.9	11
18	New mixedâ€mode secondâ€generation voltage conveyor based firstâ€order allâ€pass filter. IET Circuits, Devices and Systems, 2020, 14, 901-907.	0.9	17

#	Article	IF	CITATIONS
19	Single DDCCâ^' based simulated floating inductors and their applications. IET Circuits, Devices and Systems, 2020, 14, 796-804.	0.9	11
20	CFOA based a new grounded inductor simulator and its applications. Microelectronics Journal, 2019, 90, 297-305.	1.1	24
21	New CFOA-based first-order all-pass filters and their applications. AEU - International Journal of Electronics and Communications, 2019, 103, 57-63.	1.7	35
22	Single DDCC based new immittance function simulators employing only grounded passive elements and their applications. Microelectronics Journal, 2019, 83, 94-103.	1.1	25
23	A novel voltage-mode universal filter composed of two terminal active devices. AEU - International Journal of Electronics and Communications, 2018, 86, 202-209.	1.7	13
24	Voltage-mode first-order universal filter realizations based on subtractors. AEU - International Journal of Electronics and Communications, 2018, 90, 140-146.	1.7	31
25	A New Electronically Fine Tunable Grounded Voltage Controlled Positive Resistor. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 451-455.	2.2	19
26	Inverting voltage buffer based lossless grounded inductor simulators. AEU - International Journal of Electronics and Communications, 2018, 83, 131-137.	1.7	16
27	A new low-power current-mode MOS only versatile precision rectifier. AEU - International Journal of Electronics and Communications, 2018, 83, 40-51.	1.7	21
28	Analog Squarers Using Only Seven MOS Transistors and a Four Quadrant Analog Multiplier Application. Journal of Circuits, Systems and Computers, 2018, 27, 1850071.	1.0	3
29	A voltage-mode PID controller using a single CFOA and only grounded capacitors. Microelectronics Journal, 2018, 81, 84-93.	1.1	13
30	Supplementary single active device based grounded immittance function simulators. AEU - International Journal of Electronics and Communications, 2018, 94, 311-321.	1.7	13
31	A New DVCC+ Based Second-Order Current-Mode Universal Filter Consisting of Only Grounded Capacitors. Journal of Circuits, Systems and Computers, 2017, 26, 1750130.	1.0	17
32	Grounded capacitor based fully cascadable electronically tunable current-mode universal filter. AEU - International Journal of Electronics and Communications, 2017, 79, 116-123.	1.7	15
33	Grounded capacitance multipliers based on active elements. AEU - International Journal of Electronics and Communications, 2017, 79, 243-249.	1.7	31
34	Modified DVCC based quadrature oscillator and lossless grounded inductor simulator using grounded capacitor(s). AEU - International Journal of Electronics and Communications, 2017, 76, 86-96.	1.7	37
35	A novel full-wave rectifier/sinusoidal frequency doubler topology based on CFOAs. Analog Integrated Circuits and Signal Processing, 2017, 93, 351-362.	0.9	11
36	A new ICCII based resistor-less current-mode first-order universal filter with electronic tuning capability. Microelectronics Journal, 2017, 67, 101-110.	1.1	41

#	Article	IF	CITATIONS
37	Commercially Available Active Device Based Grounded Inductor Simulator and Universal Filter with Improved Low Frequency Performances. Journal of Circuits, Systems and Computers, 2017, 26, 1750052.	1.0	20
38	Two lossy integrator loop based current-mode electronically tunable universal filter employing only grounded capacitors. Microelectronics Journal, 2017, 59, 1-9.	1.1	10
39	DO-CCII/DO-DVCC Based Electronically Fine Tunable Quadrature Oscillators. Journal of Circuits, Systems and Computers, 2017, 26, 1750025.	1.0	16
40	A High Performance Full-Wave Rectifier Using a Single CCII-, Two Diodes and Two Resistor. Scientia Iranica, 2017, .	0.3	7
41	A new wideband electronically tunable grounded resistor employing only three MOS transistors. Turkish Journal of Electrical Engineering and Computer Sciences, 2016, 24, 2442-2453.	0.9	10
42	A new DVCC-based fully cascadable voltage-mode full-wave rectifier. Journal of Computational Electronics, 2016, 15, 1440-1449.	1.3	25
43	Second-Order Voltage-Mode Universal Filters Using Two DVCCs, Two Grounded Capacitors and Four Resistors. Journal of Circuits, Systems and Computers, 2016, 25, 1650154.	1.0	8
44	New highly linear tunable transconductor circuits with low number of MOS transistors. International Journal of Electronics, 2016, 103, 1301-1317.	0.9	5
45	A First-Order Fully Cascadable Current-Mode Universal Filter Composed of Dual Output CCIIs and a Grounded Capacitor. Journal of Circuits, Systems and Computers, 2016, 25, 1650042.	1.0	38
46	A New Transresistance-Mode Instrumentation Amplifier with Low Number of MOS Transistors and Electronic Tuning Opportunity. Journal of Circuits, Systems and Computers, 2016, 25, 1650022.	1.0	17
47	Grounded capacitor-based new floating inductor simulators and a stability test. Turkish Journal of Electrical Engineering and Computer Sciences, 2015, 23, 2138-2149.	0.9	17
48	A New CCII Based Voltage-Mode Multifunctional Filter with Reduced Number of Active and Passive Elements. Journal of Circuits, Systems and Computers, 2015, 24, 1550047.	1.0	4
49	Inverting CFOA Based Lossless and Lossy Grounded Inductor Simulators. Circuits, Systems, and Signal Processing, 2015, 34, 3081-3100.	1.2	39
50	A New Voltage-Mode Multifunctional Filter Using Only Two Voltage Followers and a Minimum Number of Passive Elements. Journal of Circuits, Systems and Computers, 2015, 24, 1550085.	1.0	6
51	Memstor, memstance simulations via a versatile 4-port built with new adder and subtractor circuits. International Journal of Electronics, 2015, 102, 911-931.	0.9	49
52	MULTI-OUTPUT CURRENT FOLLOWER BASED CURRENT-MODE UNIVERSAL FILTER EMPLOYING ONLY GROUNDED CAPACITORS. Journal of Circuits, Systems and Computers, 2014, 23, 1450123.	1.0	2
53	Negative impedance inverter and all-pass filter realizations using adder and subtractor blocks. , 2014, ,		1
54	Realization of arbitrary current transfer functions based on commercially available CCII + s. International Journal of Circuit Theory and Applications, 2014, 42, 659-670.	1.3	17

#	Article	IF	CITATIONS
55	CCII based more tunable voltage-mode all-pass filters and their quadrature oscillator applications. AEU - International Journal of Electronics and Communications, 2014, 68, 1-9.	1.7	37
56	A new 7th-order log-domain elliptic video filter using E-cell circuits approach. , 2013, , .		0
57	CMOS FIRST-ORDER CURRENT-MODE ALL-PASS FILTER WITH ELECTRONIC TUNING CAPABILITY AND ITS APPLICATIONS. Journal of Circuits, Systems and Computers, 2013, 22, 1350007.	1.0	23
58	New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA. Analog Integrated Circuits and Signal Processing, 2013, 74, 141-154.	0.9	104
59	REALIZATION OF FIRST-ORDER CURRENT-MODE FILTERS WITH LOW NUMBER OF MOS TRANSISTORS. Journal of Circuits, Systems and Computers, 2013, 22, 1250071.	1.0	31
60	Lowâ€component count BJT technologyâ€based currentâ€controlled tunable resistors and their applications. IET Circuits, Devices and Systems, 2013, 7, 21-30.	0.9	9
61	A CMOS CURRENT RECTIFIER CONFIGURATION SUITABLE FOR INTEGRATION. Journal of Circuits, Systems and Computers, 2012, 21, 1250052.	1.0	11
62	SIFO voltage-mode universal filters employing TO-CCIIs. , 2012, , .		1
63	A simple CMOS-based inductor simulator and frequency performance improvement techniques. AEU - International Journal of Electronics and Communications, 2012, 66, 884-891.	1.7	25
64	A Simple Schmitt Trigger Circuit with Grounded Passive Elements and Its Application to Square/Triangular Wave Generator. Circuits, Systems, and Signal Processing, 2012, 31, 877-888.	1.2	63
65	Reply to comment on "Novel lossless and lossy grounded inductor simulators consisting of a canonical number of componentsâ€. Analog Integrated Circuits and Signal Processing, 2012, 72, 505-507.	0.9	2
66	Allâ€pass sections with rich cascadability and IC realization suitability. International Journal of Circuit Theory and Applications, 2012, 40, 477-488.	1.3	23
67	High Input Impedance NMOS-based Phase Shifter with Minimum Number of Passive Elements. Circuits, Systems, and Signal Processing, 2012, 31, 51-60.	1.2	31
68	Derivation of low-power first-order low-pass, high-pass and all-pass filters. Analog Integrated Circuits and Signal Processing, 2012, 70, 151-156.	0.9	14
69	TO-CCII based voltage-mode universal biquadratic filter. , 2011, , .		2
70	Lossless grounded inductance simulation using only one modified dual output DDCC. , 2011, , .		8
71	CCII+ based fully CMOS four-quadrant multiplier. , 2011, , .		9
72	DXCCII-based grounded inductance simulators and filter applications. Microelectronics Journal, 2011, 42, 1074-1081.	1.1	56

#	Article	IF	CITATIONS
73	An Electronically Fine-Tunable Multi-Input–Single-Output Universal Filter. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58, 356-360.	2.2	23
74	Multiplier, frequency doubler and squarer circuits based on voltage controlled resistors. AEU - International Journal of Electronics and Communications, 2011, 65, 244-249.	1.7	8
75	BANDWIDTH EXPANSION METHODS OF INDUCTANCE SIMULATOR CIRCUITS AND VOLTAGE-MODE BIQUADS. Journal of Circuits, Systems and Computers, 2011, 20, 557-572.	1.0	12
76	NOVEL CMOS TECHNOLOGY-BASED LINEAR GROUNDED VOLTAGE CONTROLLED RESISTOR. Journal of Circuits, Systems and Computers, 2011, 20, 447-455.	1.0	20
77	All-Grounded Passive Elements Voltage-Mode DVCC-Based Universal Filters. Circuits, Systems, and Signal Processing, 2010, 29, 295-309.	1.2	68
78	A Novel CMOS-Based Voltage-Mode First-Order Phase Shifter Employing a Grounded Capacitor. Circuits, Systems, and Signal Processing, 2010, 29, 235-245.	1.2	15
79	Novel Voltage-Mode All-Pass Filter Based onÂUsingÂDVCCs. Circuits, Systems, and Signal Processing, 2010, 29, 391-402.	1.2	114
80	A novel phase shifter using two NMOS transistors and passive elements. Analog Integrated Circuits and Signal Processing, 2010, 62, 77-81.	0.9	20
81	New CCII-based versatile structure for realizing PID controller and instrumentation amplifier. Microelectronics Journal, 2010, 41, 311-316.	1.1	55
82	VARIOUS CURRENT-MODE AND VOLTAGE-MODE INSTRUMENTATION AMPLIFIER TOPOLOGIES SUITABLE FOR INTEGRATION. Journal of Circuits, Systems and Computers, 2010, 19, 689-699.	1.0	9
83	A novel floating simulation topology composed of only grounded passive components. International Journal of Electronics, 2010, 97, 249-262.	0.9	56
84	DESIGN AND STABILITY ANALYSIS OF MIXED-MODE FILTERS CONTAINING ONLY GROUNDED CAPACITORS. Journal of Circuits, Systems and Computers, 2010, 19, 1345-1363.	1.0	11
85	Unity/Variable-gain Voltage-mode/Current-mode First-order All-pass Filters Using Single Dual-X Second-generation Current Conveyor. IETE Journal of Research, 2010, 56, 305-312.	1.8	45
86	ALL GROUNDED PASSIVE ELEMENTS CURRENT-MODE ALL-PASS FILTER. Journal of Circuits, Systems and Computers, 2009, 18, 31-43.	1.0	23
87	Voltage-Mode Multifunction Filters Employing a Single DVCC and Grounded Capacitors. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 2216-2221.	2.4	38
88	New low component count floating inductor simulators consisting of a single DDCC. Analog Integrated Circuits and Signal Processing, 2009, 58, 61-66.	0.9	22
89	ICCII-based universal current-mode analog filter employing only grounded passive components. Analog Integrated Circuits and Signal Processing, 2009, 58, 161-169.	0.9	36
90	Novel lossless and lossy grounded inductor simulators consisting of a canonical number of components. Analog Integrated Circuits and Signal Processing, 2009, 59, 77-82.	0.9	62

#	Article	IF	CITATIONS
91	On the Realization of Simulated Inductors withÂReduced Parasitic Impedance Effects. Circuits, Systems, and Signal Processing, 2009, 28, 451-465.	1.2	51
92	Current-mode electronically tunable biquadratic filters consisting of only CCCIIs and grounded capacitors. Microelectronics Journal, 2009, 40, 1719-1725.	1.1	18
93	Novel floating simulated inductors with wider operating-frequency ranges. Microelectronics Journal, 2009, 40, 928-938.	1.1	33
94	A BJT technology-based current-mode tunable all-pass filter. Microelectronics Journal, 2009, 40, 921-927.	1.1	10
95	Signal limitations of the current-mode filters employing current conveyors. AEU - International Journal of Electronics and Communications, 2008, 62, 193-198.	1.7	7
96	Universal current-mode filters and parasitic impedance effects on the filter performances. International Journal of Circuit Theory and Applications, 2008, 36, 161-171.	1.3	96
97	Universal resistorless currentâ€mode filters employing CCCIIs. International Journal of Circuit Theory and Applications, 2008, 36, 739-755.	1.3	35
98	On the realization of high-order current-mode filter employing current controlled conveyors. Computers and Electrical Engineering, 2008, 34, 165-172.	3.0	33
99	Design of a Simple Current-Mode Multiplier Topology Using a Single CCCII+. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 631-637.	2.4	31
100	Grounded Inductor Simulators With Improved Low-Frequency Performances. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 1079-1084.	2.4	60
101	Electronically Tunable Simulated Transformer and Its Application to Stagger-Tuned Filter. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 2083-2088.	2.4	22
102	A Modified CFOA and Its Applications to Simulated Inductors, Capacitance Multipliers, and Analog Filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55, 266-275.	3.5	107
103	A new full-wave rectifier circuit employing single dual-X current conveyor. International Journal of Electronics, 2008, 95, 777-784.	0.9	55
104	A HIGH INPUT IMPEDANCE VOLTAGE-MODE ALL-PASS/NOTCH FILTER USING A SINGLE VARIABLE GAIN CURRENT CONVEYOR. Journal of Circuits, Systems and Computers, 2008, 17, 827-834.	1.0	15
105	A TUNABLE CIRCUIT FOR REALIZING ARBITRARY FLOATING IMPEDANCES. Journal of Circuits, Systems and Computers, 2008, 17, 513-524.	1.0	5
106	A NEW ACTIVE NETWORK SUITABLE FOR REALIZING LADDER FILTERS AND TRANSFORMER SIMULATOR. Journal of Circuits, Systems and Computers, 2007, 16, 29-41.	1.0	14
107	CURRENT-MODE ACTIVE-C FILTER EMPLOYING REDUCED NUMBER OF CCCII+s. Journal of Circuits, Systems and Computers, 2007, 16, 507-516.	1.0	15
108	High-order current-mode low-pass, high-pass and band-pass filter responses employing CCCIIs. , 2007, , .		6

#	Article	IF	CITATIONS
109	On the implementation of the floating simulators employing a single active device. AEU - International Journal of Electronics and Communications, 2007, 61, 453-458.	1.7	58
110	A novel dual output universal filter topology using a single current conveyor. Electrical Engineering, 2007, 89, 563-567.	1.2	10
111	Comments on "SITO electronically tunable high output impedance current-mode universal filterâ€. Analog Integrated Circuits and Signal Processing, 2007, 50, 271-272.	0.9	4
112	Comment Reply "The effects of non-idealities and current limitations on the simulated inductances employing current conveyorsâ€. Analog Integrated Circuits and Signal Processing, 2007, 51, 55-55.	0.9	1
113	Stability problems in universal current-mode filters. AEU - International Journal of Electronics and Communications, 2007, 61, 580-588.	1.7	26
114	Limitations of the Simulated Inductors Based on a Single Current Conveyor. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2006, 53, 2860-2867.	0.1	81
115	CCII-based PID controllers employing grounded passive components. AEU - International Journal of Electronics and Communications, 2006, 60, 399-403.	1.7	46
116	Universal Current-Mode Active-C Filter Employing Minimum Number of Passive Elements. Analog Integrated Circuits and Signal Processing, 2006, 46, 169-171.	0.9	45
117	The Effects of Non-Idealities and Current Limitations on the Simulated Inductances Employing Current Conveyors. Analog Integrated Circuits and Signal Processing, 2006, 46, 103-110.	0.9	29
118	CCII-Based Grounded to Floating Immittance Converter and a Floating Inductance Simulator. Analog Integrated Circuits and Signal Processing, 2006, 46, 287-291.	0.9	58
119	A Versatile Active Circuit for Realising Floating Inductance, Capacitance, FDNR and Admittance Converter. Analog Integrated Circuits and Signal Processing, 2006, 47, 199-202.	0.9	79
120	Comment on "realization of series and parallel R-L and C-D impedances using single differential voltage current conveyor― Analog Integrated Circuits and Signal Processing, 2006, 49, 91-92.	0.9	13
121	On the realization of the floating simulators using only grounded passive components. Analog Integrated Circuits and Signal Processing, 2006, 49, 161-166.	0.9	51
122	Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor. Electrical Engineering, 2006, 88, 519-525.	1.2	64
123	ICCII-Based Voltage-Mode Filter with Single Input and Six Outputs Employing Grounded Capacitors. Circuits, Systems, and Signal Processing, 2006, 25, 559-566.	1.2	21
124	Low-Component-Count Insensitive Current-Mode and Voltage-Mode PID, PI and PD Controllers. Frequenz, 2006, 60, .	0.6	21
125	Universal Current-Mode Active-C Filters Employing Only Plus-Type Current Controlled Conveyors. Frequenz, 2006, 60,	0.6	12
126	NOVEL FLOATING INDUCTANCE AND FDNR SIMULATORS EMPLOYING CCII+s. Journal of Circuits, Systems and Computers, 2006, 15, 75-81.	1.0	48

#	Article	IF	CITATIONS
127	A Novel Grounded Inductor Realization Using a Minimum Number of Active and Passive Components. ETRI Journal, 2005, 27, 427-432.	1.2	75
128	Modified current follower-based immittance function simulators. International Journal of Electronics, 0, , 1-18.	0.9	0