Miranda E Good

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1329072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A venous-specific purinergic signaling cascade initiated by Pannexin 1 regulates TNFα-induced increases in endothelial permeability. Science Signaling, 2021, 14, .	1.6	30
2	Endothelial Pannexin 1 Regulates Cardiac Response to Myocardial Infarction. Circulation Research, 2021, 128, 1211-1213.	2.0	14
3	Pannexin 1 as a driver of inflammation and ischemia–reperfusion injury. Purinergic Signalling, 2021, 17, 521-531.	1.1	22
4	Red Blood Cell and Endothelial eNOS Independently Regulate Circulating Nitric Oxide Metabolites and Blood Pressure. Circulation, 2021, 144, 870-889.	1.6	85
5	Loss of Endothelial FTO Antagonizes Obesity-Induced Metabolic and Vascular Dysfunction. Circulation Research, 2020, 126, 232-242.	2.0	46
6	Circulating Extracellular Vesicles in Normotension Restrain Vasodilation in Resistance Arteries. Hypertension, 2020, 75, 218-228.	1.3	25
7	Consideration of Pannexin 1 channels in COVID-19 pathology and treatment. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L121-L125.	1.3	24
8	Endothelial calreticulin deletion impairs endothelial function in aged mice. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1041-H1048.	1.5	10
9	Heterocellular Contact Can Dictate Arterial Function. Circulation Research, 2019, 124, 1473-1481.	2.0	30
10	Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. Journal of Biological Chemistry, 2019, 294, 6940-6956.	1.6	43
11	Interferon alpha/beta receptor 1 inhibition results in delayed onset increased blood pressure and altered vascular remodeling. FASEB Journal, 2019, 33, 829.10.	0.2	Ο
12	Heterocellular contact can dictate arterial function. FASEB Journal, 2019, 33, .	0.2	0
13	Pannexin 1 Channels as an Unexpected New Target of the Anti-Hypertensive Drug Spironolactone. Circulation Research, 2018, 122, 606-615.	2.0	76
14	Non–Endoplasmic Reticulum–Based Calr (Calreticulin) Can Coordinate Heterocellular Calcium Signaling and Vascular Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 120-130.	1.1	22
15	"Yin and Yang―for Notch signaling in the mature vasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1789-H1790.	1.5	1
16	Vascular Smooth Muscle Remodeling in Conductive and Resistance Arteries in Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1969-1985.	1.1	157
17	RSK2 contributes to myogenic vasoconstriction of resistance arteries by activating smooth muscle myosin and the Na ⁺ /H ⁺ exchanger. Science Signaling, 2018, 11, .	1.6	13
18	Response by Good et al to Letter Regarding Article, "Pannexin-1 Channels as an Unexpected New Target of the Antihypertensive Drug Spironolactone― Circulation Research, 2018, 122, e88-e89.	2.0	0

Miranda E Good

#	Article	IF	CITATIONS
19	<i>Klf4</i> has an unexpected protective role in perivascular cells within the microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H402-H414.	1.5	17
20	Pannexin-1 channels on endothelial cells mediate vascular inflammation during lung ischemia-reperfusion injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L301-L312.	1.3	82
21	Interaction Between Pannexin 1 and Caveolin-1 in Smooth Muscle Can Regulate Blood Pressure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2065-2078.	1.1	32
22	Endothelial cell Pannexin1 modulates severity of ischemic stroke by regulating cerebral inflammation and myogenic tone. JCI Insight, 2018, 3, .	2.3	45
23	Endothelial cell α-globin and its molecular chaperone α-hemoglobin–stabilizing protein regulate arteriolar contractility. Journal of Clinical Investigation, 2018, 128, 5073-5082.	3.9	42
24	Pannexin 1 and a Venousâ€specific Purinergic Cascade Induces Endothelial Leak in Response to TNFα. FASEB Journal, 2018, 32, 746.9.	0.2	0
25	Abstract P268: Extracellular Vesicles from Wistar Kyoto and Spontaneously Hypertensive Rats Have Differential Vasodilatory Effects on Resistance Arteries. Hypertension, 2018, 72, .	1.3	0
26	Pannexin channel and connexin hemichannel expression in vascular function and inflammation. BMC Cell Biology, 2017, 18, 2.	3.0	54
27	Small Interfering RNA-Mediated Connexin Gene Knockdown in Vascular Endothelial and Smooth Muscle Cells. Methods in Molecular Biology, 2016, 1437, 71-82.	0.4	2
28	Modulating Vascular Hemodynamics With an Alpha Globin Mimetic Peptide (HbαX). Hypertension, 2016, 68, 1494-1503.	1.3	26
29	Endothelial Cell-Expressed α Hemoglobin and Its Molecular Chaperone Ahsp Modulate Arterial Vascular Reactivity. Blood, 2016, 128, 557-557.	0.6	1
30	Emerging concepts regarding pannexin 1 in the vasculature. Biochemical Society Transactions, 2015, 43, 495-501.	1.6	30
31	Structural Determinants and Proliferative Consequences of Connexin 37 Hemichannel Function in Insulinoma Cells. Journal of Biological Chemistry, 2014, 289, 30379-30386.	1.6	14
32	Extracellular Loop Cysteine Mutant of Cx37 Fails to Suppress Proliferation of Rat Insulinoma Cells. Journal of Membrane Biology, 2012, 245, 369-380.	1.0	18
33	A functional channel is necessary for growth suppression by Cx37. Journal of Cell Science, 2011, 124, 2448-2456.	1.2	27