
Pascal Marchand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1328411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amino ether analogues of 4,4′-dihydroxy-3-methoxy-6,7′-cyclolignan and their activity against drug-resistant bacteria. Phytochemistry Letters, 2022, 50, 57-60.	0.6	1
2	Antimicrobial and antileishmanial activities of extracts and some constituents from the leaves of Solanum chrysotrichum Schldl. Medicinal Chemistry Research, 2021, 30, 152-162.	1.1	2
3	InÂvitro identification of imidazo[1,2-a]pyrazine-based antileishmanial agents and evaluation of L.Âmajor casein kinase 1 inhibition. European Journal of Medicinal Chemistry, 2021, 210, 112956.	2.6	14
4	Streptomyces hygroscopicus UFPEDA 3370: A valuable source of the potent cytotoxic agent nigericin and its evaluation against human colorectal cancer cells. Chemico-Biological Interactions, 2021, 333, 109316.	1.7	2
5	New cyclolignans of Larrea tridentata and their antibacterial and cytotoxic activities. Phytochemistry Letters, 2021, 43, 212-218.	0.6	6
6	Dibenzofuran Derivatives Inspired from Cercosporamide as Dual Inhibitors of Pim and CLK1 Kinases. Molecules, 2021, 26, 6572.	1.7	3
7	Microwave-Assisted Synthesis of Potential Bioactive Benzo-, Pyrido- or Pyrazino-thieno[3,2-d]pyrimidin-4-amine Analogs of MPC-6827. Pharmaceuticals, 2020, 13, 202.	1.7	9
8	Exploring Kinase Inhibition Properties of 9H-pyrimido[5,4-b]- and [4,5-b]indol-4-amine Derivatives. Pharmaceuticals, 2020, 13, 89.	1.7	7
9	Biological Evaluation of Arylsemicarbazone Derivatives as Potential Anticancer Agents. Pharmaceuticals, 2019, 12, 169.	1.7	9
10	A Decade of Antifungal Leads from Natural Products: 2010–2019. Pharmaceuticals, 2019, 12, 182.	1.7	51
11	Design and Synthesis of Imidazo[1,2â€ <i>a</i>]pyridines with Carboxamide Group Substitution and <i>In silico</i> Evaluation of their Interaction with a LuxRâ€ŧype Quorum Sensing Receptor. Journal of Heterocyclic Chemistry, 2018, 55, 1101-1111.	1.4	4
12	Benzofuro[3,2-d]pyrimidines inspired from cercosporamide CaPkc1 inhibitor: Synthesis and evaluation of fluconazole susceptibility restoration. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2250-2255.	1.0	11
13	Synthesis and anticancer activity of novel bisindolylhydroxymaleimide derivatives with potent GSK-3 kinase inhibition. Bioorganic and Medicinal Chemistry, 2018, 26, 4209-4224.	1.4	14
14	Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil). Applied Microbiology and Biotechnology, 2017, 101, 711-723.	1.7	14
15	Efficient synthesis of novel disubstituted pyrido[3,4-b]pyrazines for the design of protein kinase inhibitors. MedChemComm, 2016, 7, 224-229.	3.5	5
16	Discovery of Novel (Imidazo[1,2-a]pyrazin-6-yl)ureas as Antiproliferative Agents Targeting P53 in Non-small Cell Lung Cancer Cell Lines. Anticancer Research, 2016, 36, 1621-30.	0.5	3
17	Synthesis and molecular modelling studies of 8-arylpyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4-amines as multitarget Ser/Thr kinases inhibitors. European Journal of Medicinal Chemistry, 2015, 92, 124-134.	2.6	41
18	Synthesis, antileishmanial activity and cytotoxicity of 2,3-diaryl- and 2,3,8-trisubstituted imidazo[1,2-a]pyrazines. European Journal of Medicinal Chemistry, 2015, 103, 381-395.	2.6	23

#	Article	IF	CITATIONS
19	Discovery of 7â€Arylâ€Substituted (1,5â€Naphthyridinâ€4â€yl)ureas as Aurora Kinase Inhibitors. ChemMedChem, 2014, 9, 217-232.	1.6	9
20	Discovery of (7-aryl-1,5-naphthyridin-2-yl)ureas as dual inhibitors of ERK2 and Aurora B kinases with antiproliferative activity against cancer cells. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3748-3752.	1.0	6
21	Exploration of versatile reactions on 2-chloro-3-nitroimidazo[1,2-a]pyridine: expanding structural diversity of C2- and C3-functionalized imidazo[1,2-a]pyridines. Tetrahedron Letters, 2013, 54, 5378-5382.	0.7	18
22	Synthesis of novel 7-substituted pyrido[2′,3′:4,5]furo[3,2-d]pyrimidin-4-amines and their N-aryl analogues and evaluation of their inhibitory activity against Ser/Thr kinases. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6784-6788.	1.0	19
23	Synthesis and antiproliferative activity of benzofuran-based analogs of cercosporamide against non-small cell lung cancer cell lines. European Journal of Medicinal Chemistry, 2013, 69, 823-832.	2.6	40
24	Synthesis and biological evaluation of N-aryl-7-methoxybenzo[b]furo[3,2-d]pyrimidin-4-amines and their N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amine analogues as dual inhibitors of CLK1 and DYRK1A kinases. European Journal of Medicinal Chemistry, 2013, 59, 283-295.	2.6	41
25	Efficient New Synthesis of <i>N</i> â€Arylbenzo[<i>b</i>]furo[3,2â€ <i>d</i>]pyrimidinâ€4â€amines and Their Benzo[<i>b</i>]thieno[3,2â€ <i>d</i>]pyrimidinâ€4â€amine Analogues via a Microwaveâ€Assisted Dimroth Rearrangement. Journal of Heterocyclic Chemistry, 2013, 50, 1187-1197.	1.4	7
26	A Convenient Synthesis of Novel 2,8-Disubstituted Pyrido[3,4-b]pyrazines Possessing Biological Activity. Synthesis, 2012, 44, 69-82.	1.2	18
27	Synthesis and biological evaluation of N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amines and their pyrido and pyrazino analogues as Ser/Thr kinase inhibitors. European Journal of Medicinal Chemistry, 2012, 58, 171-183.	2.6	47
28	Synthesis and biological evaluation of 2,3-diarylimidazo[1,2-a]pyridines as antileishmanial agents. European Journal of Medicinal Chemistry, 2012, 58, 543-556.	2.6	61
29	An efficient access to 2,3-diarylimidazo[1,2-a]pyridines via imidazo[1,2-a]pyridin-2-yl triflate through a Suzuki cross-coupling reaction-direct arylation sequence. Tetrahedron Letters, 2012, 53, 297-300.	0.7	66
30	First synthesis of 4-aminopyrido[2′,3′:4,5]furo[3,2-d]pyrimidines. Tetrahedron Letters, 2012, 53, 944-947.	0.7	14
31	A convenient route to functionalized 3-amino-N-methylfuro[3,2-b]pyridine-2-carboxamides. Tetrahedron, 2011, 67, 4767-4773.	1.0	13
32	Preparation of Novel 2,3,8-Trisubstituted Pyrido[3,4-b]pyrazines and Pyrido[2,3-b]pyrazines. Synthesis, 2011, 2011, 794-806.	1.2	1
33	A convenient route to functionalized 3-amino-6-bromofuro[3,2-b]pyridine-2-carboxamides. Tetrahedron, 2010, 66, 4490-4494.	1.0	8
34	Synthesis of N-aryl-3-(indol-3-yl)propanamides and their immunosuppressive activities. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5203-5206.	1.0	5
35	A Novel Indole-3-propanamide Exerts Its Immunosuppressive Activity by Inhibiting JAK3 in T Cells. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 710-716.	1.3	8
36	Synthesis and structure–activity relationships of N-aryl(indol-3-yl)glyoxamides as antitumor agents. Bioorganic and Medicinal Chemistry, 2009, 17, 6715-6727.	1.4	16

Pascal Marchand

#	Article	IF	CITATIONS
37	Side chain modifications of (indol-3-yl)glyoxamides as antitumor agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2008, 23, 686-695.	2.5	2
38	Synthesis and biological evaluation of 3-(azolylmethyl)-1H-indoles and 3-(α-azolylbenzyl)-1H-indoles as selective aromatase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2007, 22, 667-676.	2.5	8
39	Efficient microwave-assisted synthesis of 1-(1H-indol-1-yl)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols as antifungal agents. Tetrahedron Letters, 2006, 47, 6479-6483.	0.7	40
40	Antileishmanial activities and mechanisms of action of indole-based azoles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2006, 21, 277-283.	2.5	17
41	Palladium(II)-catalyzed heterocyclisation of 8-arylethynyl-1,2,3,4-tetrahydroquinolines: a facile route to 2-aryl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinoline derivatives. Tetrahedron, 2005, 61, 4035-4041.	1.0	12
42	Three-dimensional model of cytochrome P450 human aromatase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2005, 20, 581-585.	2.5	16
43	2- and 3-[(Aryl)(azolyl)methyl]indoles as Potential Non-steroidal Aromatase Inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 19, 549-557.	2.5	60
44	Preparation and Pharmacological Profile of 7-($\hat{l}\pm$ -Azolylbenzyl)-1H-indoles and Indolines as New Aromatase Inhibitors ChemInform, 2003, 34, no.	0.1	0
45	Preparation and pharmacological profile of 7-(α-Azolylbenzyl)-1H-indoles and indolines as new aromatase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1553-1555.	1.0	36
46	Retinoic Acid Metabolism Inhibition by 3-Azolylmethyl-1H-indoles and 2, 3 or 5-(α-Azolylbenzyl)-1H-indoles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2003, 18, 155-158.	2.5	5
47	In Vitro Activity of a New Antifungal Azolyl-substituted Indole Against Aspergillus fumigatus. Journal of Enzyme Inhibition and Medicinal Chemistry, 2002, 17, 425-429.	2.5	4
48	Synthesis and Antileishmanial Activity of 3-(α-Azolylbenzyl)indoles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2002, 17, 353-358.	2.5	6
49	New selective nonsteroidal aromatase inhibitors: Synthesis and inhibitory activity of 2,3 or 5-(α-azolylbenzyl)-1H-indoles. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 333-336.	1.0	67
50	Synthesis andIn Vitro Evaluation of 3-(1-Azolylmethyl)-1H-indoles and 3-(1-Azolyl-1-phenylmethyl)-1H-indoles as Inhibitors of P450 arom. Archiv Der Pharmazie, 1997, 330, 141-145.	2.1	54