Maryline Guilloux-Viry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1328071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epitaxial growth of LiNbO3 thin films in a microwave oven. Thin Solid Films, 2003, 436, 213-219.	0.8	61
2	Infrared properties ofYBa2Cu3O7andBi2Sr2Canâ^'1CunO2n+4thin films. Physical Review B, 1994, 49, 9846-9856.	1.1	58
3	When "Metal Atom Clusters―Meet ZnO Nanocrystals: A ((<i>n</i> < ₄ H ₉) ₄ N) ₂ Mo ₆ Br ₁₄ Hybrid. Advanced Materials, 2008, 20, 1710-1715.	@ZnQ	56
4	RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy. Optical Materials Express, 2013, 3, 2112.	1.6	50
5	LiNbO3 thick films grown on sapphire by using a multistep sputtering process. Journal of Applied Physics, 2001, 90, 5274-5277.	1.1	49
6	Lead-free Na0.5Bi0.5TiO3 ferroelectric thin films grown by Pulsed Laser Deposition on epitaxial platinum bottom electrodes. Thin Solid Films, 2008, 517, 592-597.	0.8	48
7	Sr1â^'xBaxSnO3 system applied in the photocatalytic discoloration of an azo-dye. Solid State Sciences, 2014, 28, 67-73.	1.5	47
8	Indirect Reduction of Aryldiazonium Salts onto Cathodically Activated Platinum Surfaces:  Formation of Metalâ^'Organic Structures. Langmuir, 2005, 21, 6422-6429.	1.6	46
9	Electrical properties of (110) epitaxial lead-free ferroelectric Na0.5Bi0.5TiO3 thin films grown by pulsed laser deposition: Macroscopic and nanoscale data. Journal of Applied Physics, 2012, 111, .	1.1	46
10	Ion beam etching of lead–zirconate–titanate thin films: Correlation between etching parameters and electrical properties evolution. Journal of Applied Physics, 2002, 92, 1048-1055.	1.1	45
11	Surface plasmon resonance in chalcogenide glass-based optical system. Sensors and Actuators B: Chemical, 2008, 130, 771-776.	4.0	43
12	Macroscopic and nanoscale electrical properties of pulsed laser deposited (100) epitaxial lead-free Na0.5Bi0.5TiO3 thin films. Journal of Applied Physics, 2010, 107, .	1.1	43
13	Synthesis of crystallized TaON and Ta3N5 by nitridation of Ta2O5 thin films grown by pulsed laser deposition. Solid State Sciences, 2004, 6, 101-107.	1.5	42
14	Focus on properties and applications of perovskites. Science and Technology of Advanced Materials, 2015, 16, 020301.	2.8	41
15	High crystalline quality CeO2 buffer layers epitaxied on sapphire for YBa2Cu3O7 thin films. Journal of Crystal Growth, 1998, 187, 211-220.	0.7	39
16	Surface enhanced infrared absorption (SEIRA) spectroscopy using gold nanoparticles on As2S3 glass. Sensors and Actuators B: Chemical, 2012, 175, 142-148.	4.0	37
17	(20â^'23) ZnO thin films grown by pulsed laser deposition on CeO2-buffered r-sapphire substrate. Journal of Applied Physics, 2007, 101, 013509.	1.1	34
18	Optimization of chalcogenide glass in the As–Se–S system for automotive applications. Optical Materials, 2009, 31, 1688-1692.	1.7	33

#	Article	IF	CITATIONS
19	Temperature-dependent Raman scattering of KTa1â^'xNbxO3 thin films. Applied Physics Letters, 2010, 96, .	1.5	31
20	Pulsed laser deposited KNbO3 thin films for applications in high frequency range. Thin Solid Films, 2006, 515, 2353-2360.	0.8	30
21	Microstructure of (001), (110) and (103) oriented thin films of YBa2Cu3O7â^'x investigated with STM, SEM and HRTEM. Physica C: Superconductivity and Its Applications, 1994, 223, 370-382.	0.6	28
22	Reactivity of Platinum Metal with Organic Radical Anions from Metal to Negative Oxidation States. Journal of the American Chemical Society, 2007, 129, 6654-6661.	6.6	28
23	Ferroelectric (116) SrBi2Nb2O9 thin films epitaxially grown by pulsed laser deposition on epitaxial (110) Pt/(110) SrTiO3 electrode. Applied Physics Letters, 2002, 81, 2067-2069.	1.5	27
24	Substrate-controlled allotropic phases and growth orientation of TiO ₂ epitaxial thin films. Journal of Applied Crystallography, 2010, 43, 1502-1512.	1.9	27
25	KTa/sub 0.6/Nb/sub 0.4/O/sub 3/ ferroelectric thin film behavior at microwave frequencies for tunable applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 2280-2286.	1.7	26
26	Nanoscale study of the ferroelectric properties of SrBi2Nb2O9 thin films grown by pulsed laser deposition on epitaxial Pt electrodes using atomic force microscope. Applied Surface Science, 2003, 217, 108-117.	3.1	25
27	Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films. Thin Solid Films, 2008, 516, 4882-4888.	0.8	25
28	Surface and in-plane characterization of YBa2Cu3O7 thin films grown by laser ablation. Physica C: Superconductivity and Its Applications, 1991, 179, 262-268.	0.6	24
29	YBa2Cu3O7 films epitaxially grown on MgO, LaAlO3, SrLaAlO4 and Al2O3 substrates structural and superconducting properties in correlation with the microwave surface resistance and the far-infrared transmittance. Physica C: Superconductivity and Its Applications, 1995, 244, 231-242.	0.6	24
30	Highly tunable microwave stub resonator on ferroelectric KTa0.5Nb0.5O3 thin film. Applied Physics Letters, 2011, 99, 092904.	1.5	24
31	Spectroscopic Evidence of Platinum Negative Oxidation States at Electrochemically Reduced Surfaces. Journal of Physical Chemistry C, 2007, 111, 5701-5707.	1.5	23
32	Observation of magnetization reversal in epitaxial Gd0.67Ca0.33MnO3 thin films. Applied Physics Letters, 2005, 86, 062506.	1.5	22
33	Cathodic Modifications of Platinum Surfaces in Organic Solvent:Â Reversibility and Cation Type Effects. Journal of Physical Chemistry B, 2005, 109, 14925-14931.	1.2	21
34	Correlation between microwave surface resistance, AC susceptibility and in-plane ordering in YBa2Cu3O7 thin films epitaxially grown on (100) MgO substrates. Physica C: Superconductivity and Its Applications, 1995, 255, 281-292.	0.6	20
35	In-situ YBa2Cu3O7â~'x thin films epitaxially grown by single target DC sputtering. Physica C: Superconductivity and Its Applications, 1990, 166, 105-110.	0.6	18
36	Heteroepitaxial growth of PZT thin films on LiF substrate by pulsed laser deposition. Thin Solid Films, 1999, 352, 66-72.	0.8	18

#	Article	IF	CITATIONS
37	Evidence of intergrowth in SrBi2Nb2O9 (SBN) thin films grown by PLD on (1 0 0)SrTiO3 in relation with the composition. Applied Surface Science, 2002, 186, 391-396.	3.1	18
38	Fabrication of p-type doped ZnO thin films using pulsed laser deposition. Journal of Materials Science: Materials in Electronics, 2005, 16, 421-427.	1.1	18
39	Thin Film Materials Characterization Using TE Modes Cavity. Journal of Electromagnetic Waves and Applications, 2009, 23, 549-559.	1.0	18
40	Influence of the network modifier on the characteristics of MSnO3 (M=Sr and Ca) thin films synthesized by chemical solution deposition. Journal of Solid State Chemistry, 2013, 199, 34-41.	1.4	18
41	Intercomparison of permittivity measurement techniques for ferroelectric thin layers. Journal of Applied Physics, 2014, 115, .	1.1	18
42	Crystal growth of (110) and (103) YBa2Cu3O7 thin films in-situ deposited by laser ablation on (110) SrTiO3 single-crystal substrates. Journal of Crystal Growth, 1993, 132, 396-404.	0.7	17
43	Ferroelectric Thin Films for Applications in High Frequency Range. Ferroelectrics, 2005, 316, 7-12.	0.3	17
44	Metal–insulator transitions in (V1-xCrx)2O3 thin films deposited by reactive direct current magnetron co-sputtering. Thin Solid Films, 2016, 617, 56-62.	0.8	17
45	Thin films of (RE) Ba2Cu3O7 epitaxially grown in situ by excimer laser ablation: structural and superconducting behaviour. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 18, 115-121.	1.7	16
46	Optical conductivity and carrier relaxation rate in the normal state of high Tc thin films. Journal of Alloys and Compounds, 1993, 195, 663-666.	2.8	16
47	Composition control of SBN thin films deposited by PLD on various substrates. Solid State Sciences, 2001, 3, 1133-1135.	0.8	16
48	Improved properties of epitaxial YNixMn1â^'xO3 films by annealing under high magnetic fields. Applied Physics Letters, 2006, 89, 152505.	1.5	16
49	SrSnO3:N – Nitridation and evaluation of photocatalytic activity. Journal of Alloys and Compounds, 2015, 649, 491-494.	2.8	16
50	Microwave properties ofYBa2Cu3O7â^îÎthin films in linear and nonlinear regime in a dc magnetic field. Physical Review B, 2000, 61, 1596-1604.	1.1	15
51	In situ EC-AFM imaging of cathodic modifications of platinum surfaces performed in dimethylformamide. Electrochemistry Communications, 2004, 6, 188-192.	2.3	15
52	Preparation of KNbO3 thin films onto alumina substrates by polymeric precursor method. Thin Solid Films, 2005, 493, 139-145.	0.8	15
53	Microstructure comparison between KNbO3 thin films grown by polymeric precursors and PLD methods. Solid State Sciences, 2005, 7, 1317-1323.	1.5	15
54	ZnO thin films grown on platinum (111) buffer layers by pulsed laser deposition. Thin Solid Films, 2006, 500, 78-83.	0.8	15

MARYLINE GUILLOUX-VIRY

#	Article	IF	CITATIONS
55	Structural improvement of PLD grown KTa0.65Nb0.35O3 films by the use of KNbO3 seed layers. Applied Surface Science, 2007, 254, 1298-1302.	3.1	15
56	Penetration depth inYBa2Cu3O7thin films from far-infrared transmission. Physical Review B, 1995, 52, 564-569.	1.1	14
57	Growth and optical properties of KTa1â^'xNbxO3 thin films grown by pulsed laser deposition on MgO substrates. Journal of Applied Physics, 2007, 102, 093106.	1.1	14
58	Reduction of microwave dielectric losses in KTa1â^'xNbxO3 thin films by MgO-doping. Thin Solid Films, 2009, 517, 5940-5942.	0.8	14
59	Effects of in-plane high angle grain boundaries in YBa2Cu3O7 thin films epitaxially grown on (100) MgO on their physical properties. Journal of Alloys and Compounds, 1997, 251, 74-77.	2.8	13
60	Synthesis of KTaxNb1â^'xO3 (KTN) powders and thin films by polymeric precursor method. Solid State Sciences, 2009, 11, 91-95.	1.5	13
61	Nanorods of Potassium Tantalum Niobate Tetragonal Tungsten Bronze Phase Grown by Pulsed Laser Deposition. Chemistry of Materials, 2013, 25, 2793-2802.	3.2	13
62	Support-Promoted Stabilization of the Metastable PZT Pyrochlore Phase by Epitaxial Thin Film Growth. Journal of Solid State Chemistry, 2001, 158, 40-48.	1.4	12
63	Epitaxial growth and ferroelectric properties of SrBi2Nb2O9(115) thin films grown by pulsed-laser deposition on epitaxial Pt(111) electrode. Applied Physics Letters, 2003, 83, 5500-5502.	1.5	12
64	Dielectric characterization in a broad frequency and temperature range of SrBi2Nb2O9 thin films grown on Pt electrodes. Journal of Applied Physics, 2005, 97, 114102.	1.1	12
65	KTaO3 powders and thin films prepared by polymeric precursor method. Solid State Sciences, 2006, 8, 606-612.	1.5	12
66	Synthesis of SrSnO3 thin films by pulsed laser deposition: Influence of substrate and deposition temperature. Thin Solid Films, 2010, 519, 614-618.	0.8	12
67	Synthesis of Cu2Mo6S8 powders and thin films from intermediate oxides prepared by polymeric precursor method. Solid State Sciences, 2012, 14, 719-724.	1.5	12
68	Ferroelectric SBN thin films grown by an SBN/Bi2O3 PLD sequential process. Journal of the European Ceramic Society, 2001, 21, 2199-2205.	2.8	11
69	Thermal grafting of organic monolayers on amorphous carbon and silicon (111) surfaces: A comparative study. Diamond and Related Materials, 2009, 18, 1074-1080.	1.8	11
70	Controlling the Electronic, Structural, and Optical Properties of Novel MgTiO ₃ /LaNiO ₃ Nanostructured Films for Enhanced Optoelectronic Devices. ACS Applied Nano Materials, 2019, 2, 2612-2620.	2.4	11
71	KTN Dielectric Properties at Microwave Frequencies: Substrate Influence. Ferroelectrics, 2007, 353, 21-28.	0.3	10
72	Electric Pulse Induced Resistive Switching in the Narrow Gap Mott Insulator GaMo ₄ S ₈ . Key Engineering Materials, 2014, 617, 135-140.	0.4	10

#	Article	IF	CITATIONS
73	Enhanced tunability and temperature-dependent dielectric characteristics at microwaves of K0.5Na0.5NbO3 thin films epitaxially grown on (100)MgO substrates. Journal of Alloys and Compounds, 2021, 856, 158138.	2.8	10
74	Surface immobilization of Mo618 octahedral cluster cores on functionalized amorphous carbon using a pyridine complexation strategy. Diamond and Related Materials, 2015, 55, 131-138.	1.8	9
75	Evolution of the structural and microstructural characteristics of SrSn1â^'xTixO3 thin films under the influence of the composition, the substrate and the deposition method. Surface and Coatings Technology, 2017, 313, 361-373.	2.2	9
76	Epitaxial growth and cationic exchange properties of layered KNb ₃ O ₈ thin films. RSC Advances, 2017, 7, 15482-15491.	1.7	9
77	Effect of in-plane ordering on dielectric properties of highly {111}-oriented bismuth–zinc–niobate thin films. Journal of Materials Science, 2017, 52, 11306-11313.	1.7	9
78	Non-volatile resistive switching in the Mott insulator (V1â^'xCrx)2O3. Physica B: Condensed Matter, 2018, 536, 327-330.	1.3	9
79	In-situ pulsed laser deposited superconducting CuxMo6S8 (2 ≤ ≤) thin films epitaxially grown on R-plane Al2O3. Solid State Communications, 1997, 101, 909-914.	0.9	8
80	Structural characterization of thin films of the SrBi2Nb2O9ferroelectric Aurivillius phase epitaxially grown on (110)SrTiO3. Journal of Applied Crystallography, 2003, 36, 96-102.	1.9	8
81	EFFECT OF THIN KNbO3 SEED LAYERS ON PULSED LASER DEPOSITED FERROELECTRIC KTa0.65Nb0.35O3 FILMS FOR MICROWAVE TUNABLE APPLICATION. Integrated Ferroelectrics, 2007, 93, 126-132.	0.3	8
82	Structural Characteristics of KTa _{0.5} Nb _{0.5} O ₃ Ferroelectric Thin Films and Applications to Planar Transmission Lines. Ferroelectrics, 2008, 362, 137-144.	0.3	8
83	Zinc-gallium oxynitride powders: effect of the oxide precursor synthesis route. Ceramica, 2013, 59, 269-276.	0.3	8
84	K x Na1â^'xNbO3 perovskite thin films grown by pulsed laser deposition on R-plane sapphire for tunable microwave devices. Journal of Materials Science, 2018, 53, 13042-13052.	1.7	8
85	Highly Transparent and Conductive Indiumâ€Free Vanadates Crystallized at Reduced Temperature on Glass Using a 2D Transparent Nanosheet Seed Layer. Advanced Functional Materials, 2022, 32, 2108047.	7.8	8
86	Ternary molybdenum cluster sulfides: electrochemical and chemical behavior of in situ pulsed laser deposited thin films. Solid State Sciences, 1999, 1, 623-635.	1.5	7
87	Effects of substrate preparation on properties of YBaCuO thin films. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1993-1994.	0.6	7
88	Radiofrequency Characterization of Gold/Ferroelectric SrBi 2 Nb 2 O 9 Heterostructures for Tunable Devices. Ferroelectrics, 2003, 288, 103-110.	0.3	7
89	Tunable microwave components based on KTa/sub x/Nb/sub 1-x/O/sub 3/ ferroelectric material. , 2005, , .		7
90	Towards the Integration of Epitaxially Grown KTN Thin Films in Silicon Technology. Ferroelectrics, 2008, 362, 95-104.	0.3	7

#	Article	IF	CITATIONS
91	Magnetization reversal in bulk and thin films of the ferrimagnetic ErCo0.50Mn0.50O3 perovskite. Journal of Magnetism and Magnetic Materials, 2009, 321, 1723-1726.	1.0	7
92	Dielectric and structural characterization of KNbO3 ferroelectric thin films epitaxially grown by pulsed laser deposition on Nb doped SrTiO3. Thin Solid Films, 2010, 518, 3432-3438.	0.8	7
93	Structural, Optical, and Dielectric Properties of Bi _{1.5–<i>x</i>} Zn _{0.92–<i>y</i>} Nb _{1.5} O _{6.92â[^]î} Thin File Grown by PLD on R-plane Sapphire and LaAlO ₃ Substrates. ACS Applied Materials & amp; Interfaces. 2012. 4. 5227-5233.	ns _{4.0}	7
94	Study of ferroelectric/dielectric multilayers for tunable stub resonator applications at microwaves. Thin Solid Films, 2014, 553, 109-113.	0.8	7
95	Tetragonal tungsten bronze phase thin films in the K–Na–Nb–O system: Pulsed laser deposition, structural and dielectric characterizations. Journal of Alloys and Compounds, 2020, 827, 154341.	2.8	7
96	Frequency-Tunable Slot-Loop Antenna Based on KNN Ferroelectric Interdigitated Varactors. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 1414-1418.	2.4	7
97	Epitaxial YBa2Cu3O7 and GdBa2Cu3O7 thin films grown in-situ by single target d.c. sputtering. Journal of the Less Common Metals, 1990, 164-165, 336-343.	0.9	6
98	Ex-situ fluorination of oxygen deficient YBa2Cu3Ox thin films deposited by laser ablation on (100) SrTiO3 substrates. Solid State Communications, 1996, 98, 501-505.	0.9	6
99	Properties of thin and ultra-thin YBCO films grown by a Co-evaporation technique. Journal of Alloys and Compounds, 1997, 251, 156-160.	2.8	6
100	Influence of the deposition parameters on the characteristics of CuxMo6S8 thin films in situ grown by pulsed laser deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 72, 47-55.	1.7	6
101	Y(Ni, Mn)O3 epitaxial thin films prepared by pulsed laser deposition. Physica Status Solidi A, 2004, 201, 2385-2389.	1.7	6
102	Annealing effects on the microstructure and properties of Y(Ni,Mn)O3 thin films. Journal of the European Ceramic Society, 2005, 25, 2147-2150.	2.8	6
103	Epitaxial Regrowth of Ferroelectric Thin Films on Bottom Electrodes. Ferroelectrics, 2005, 316, 71-82.	0.3	6
104	Enhancement of electrochemical transfer junction for cation extraction. Electrochemistry Communications, 2010, 12, 1734-1737.	2.3	6
105	Ferroelectric and dielectric multilayer heterostructures based on KTa0.65Nb0.35O3 and Bi1.5-xZn0.92-yNb1.5O6.92–1.5x-y grown by pulsed laser deposition and chemical solution deposition for high frequency tunable devices. Thin Solid Films, 2012, 520, 4564-4567.	0.8	6
106	Lead-Free Oxide Thin Films for Gas Detection. Advanced Materials Research, 2013, 789, 105-111.	0.3	6
107	Low-cost photomask fabrication using laser ablation. Journal of Materials Processing Technology, 2015, 216, 71-78.	3.1	6
108	Orientation control of KNbO3 film grown on glass substrates by Ca2Nb3O10â^' nanosheets seed layer. Thin Solid Films, 2020, 693, 137682.	0.8	6

#	Article	IF	CITATIONS
109	Influence of two-dimensional oxide nanosheets seed layers on the growth of (100)BiFeO3 thin films synthesized by chemical solution deposition. Thin Solid Films, 2020, 693, 137687.	0.8	6
110	Effect of the Microstructure of ZnO Thin Films Prepared by PLD on Their Performance as Toxic Gas Sensors. Chemosensors, 2022, 10, 285.	1.8	6
111	The structural characterization of dc sputtered in situ YBa2Cu3O7â^'x thin films. Materials Letters, 1990, 10, 126-132.	1.3	5
112	Tc enhancement and superconducting properties of a YBa2Cu3Oâ^¼6.5 thin film after fluorine insertion. Physica C: Superconductivity and Its Applications, 1993, 206, 6-12.	0.6	5
113	Fluorination of an epitaxial YBaCuO thin film with controlled oxygen vacancies. Journal of Alloys and Compounds, 1993, 195, 339-342.	2.8	5
114	Epitaxial growth of superconducting YBa2Cu3O7 thin films on bare R-plane sapphire substrate. Physica C: Superconductivity and Its Applications, 1994, 235-240, 665-666.	0.6	5
115	On the epitaxial growth of pzt films by pulsed laser deposition. Annales De Chimie: Science Des Materiaux, 1998, 23, 377-380.	0.2	5
116	Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy using Gold Nanoparticles on As2S3 Glass. Procedia Engineering, 2011, 25, 1645-1648.	1.2	5
117	KTa0.65Nb0.35O3 thin films epitaxially grown by pulsed laser deposition on metallic and oxide epitaxial electrodes. Applied Surface Science, 2012, 258, 9297-9301.	3.1	5
118	Optimization of bandpass optical filters based on TiO2nanolayers. Optical Engineering, 2015, 54, 015101.	0.5	5
119	Electrochemical behaviour of CuxMo6S8 thin films synthesized by CSD. Electrochimica Acta, 2017, 257, 436-443.	2.6	5
120	Crystalline characterization by Rutherford backscattering spectrometry and electron channelling of in situ grown YBa2Cu3O7 thin films deposited on (1 0 0) MgO by d.c. sputtering or laser ablation. Journal of Materials Science, 1993, 28, 4934-4939.	1.7	4
121	Thin films of (RE)Ba2Cu3O7in-situ epitaxially grown by laser ablation : crystalline structure, resistivity and critical exponents of temperature dependent critical currents. Journal of Alloys and Compounds, 1993, 195, 195-198.	2.8	4
122	Far-infrared transmission of YBa2Cu3O7â~'δ thin films. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1083-1084.	0.6	4
123	New model for the in-plane permittivity of YBa2Cu3O7 films in the mid IR range. Solid State Communications, 1994, 89, 803-807.	0.9	4
124	Growth and characterization of HTSC thin films for microelectronic devices. Microelectronics Journal, 1996, 27, 343-360.	1.1	4
125	Hot pressing sintered CuxMo6S8 targets for laser ablation thin films deposition. Solid State Sciences, 1999, 1, 647-656.	1.5	4
126	Sinterização de filmes finos de LiNbO3 em forno microondas: estudo da influência da direção do fluxo de calor. Ceramica, 2004, 50, 128-133.	0.3	4

#	Article	IF	CITATIONS
127	SrBi2Nb2O9 thin films epitaxially grown on Pt epitaxial bottom layers: structural characteristics and nanoscale characterization of the ferroelectric behaviour by AFM. Annalen Der Physik, 2004, 13, 35-38.	0.9	4
128	Thermal conductivity of SrBi2Nb2O9 ferroelectric thin films. Applied Physics Letters, 2006, 89, 092904.	1.5	4
129	KTa0.5Nb0.5O3 ferroelectric thin films: processing, characterization and application to microwave agile devices. Frequenz, 2007, 61, .	0.6	4
130	Magnetization reversal in Gd0.67Ca0.33MnO3: Comparison between epitaxial thin films and bulk. Applied Surface Science, 2007, 254, 339-342.	3.1	4
131	KTa _{0.5} Nb _{0.5} O ₃ ferroelectric thin films grown by pulsed laser deposition: structural characteristics and applications to microwave devices. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3298-3303.	0.8	4
132	Epitaxially grown ferroelectric thin films for agile devices. Phase Transitions, 2008, 81, 643-665.	0.6	4
133	NdSrNi0.8Cu0.2O4a [~] δ thin films epitaxially grown by pulsed laser deposition on LaAlO3 and SrTiO3: A potential electrode for epitaxial regrowth of perovskite structure-based oxides. Journal of Crystal Growth, 2009, 311, 2746-2752.	0.7	4
134	Mg diffusion in K(Ta0.65Nb0.35)O3 thin films grown on MgO evidenced by Auger electron spectroscopy investigation. Applied Surface Science, 2011, 257, 9485-9489.	3.1	4
135	Loss Reduction Technique in Ferroelectric Tunable Devices by Laser Microetching. Application to a CPW Stub Resonator in <inline-formula> <tex-math notation="LaTeX">\$X\$ </tex-math> </inline-formula> -Band. IEEE Transactions on Electron Devices, 2014, 61, 4166-4170.	1.6	4
136	In-plane orientation and superconductivity of in-situ dc sputtered YBa2Cu3O7 films Physica B: Condensed Matter, 1990, 165-166, 1473-1474.	1.3	3
137	Microwave HTSC resonators and filters. Physica C: Superconductivity and Its Applications, 1994, 235-240, 3379-3380.	0.6	3
138	Epitaxially grown molybdenum thin films deposited by laser ablation on (100) MgO substrates. Thin Solid Films, 1996, 280, 76-82.	0.8	3
139	Superconducting Cu2Mo6S8thin films deposited in-situ by laser ablation on R-plane sapphire. EPJ Applied Physics, 1998, 1, 197-201.	0.3	3
140	Substrate effect on the PLD growth of ferroelectric materials thin films. Ferroelectrics, 2001, 254, 53-64.	0.3	3
141	Nonlinear optical properties and domain microstructure of epitaxial SrBi2Nb2O9 thin films on SrTiO3 and on MgO substrates studied by second-harmonic generation. Optics Communications, 2003, 222, 289-297.	1.0	3
142	PLD Thin Films Synthesis and Bulk Phase Diagram: Two Complementary Studies in the SrBiNbO Sytem. Ferroelectrics, 2003, 288, 221-233.	0.3	3
143	Pulsed laser deposited SrBi2Nb2O9 thin films grown on various substrates compatible with microwaves applications. Annalen Der Physik, 2004, 13, 55-56.	0.9	3
144	YNixMn1â^'xO3 thin films by pulsed laser deposition: Structure and magnetic properties. Thin Solid Films, 2006, 510, 275-279.	0.8	3

#	Article	IF	CITATIONS
145	Tunable DBR resonators using KTN ferroelectric thin-films. IEEE MTT-S International Microwave Symposium Digest IEEE MTT-S International Microwave Symposium, 2007, , .	0.0	3
146	Numerical and comparative study of the agility of planar transmission lines printed on a ferroelectric thin film. Microwave and Optical Technology Letters, 2007, 49, 280-285.	0.9	3
147	KTa1-xNbxO3 thin films-based tunable microwave filter. Electronics Letters, 2008, 44, 533.	0.5	3
148	KTN ferroelectricsâ€based microwave tunable phase shifter. Microwave and Optical Technology Letters, 2010, 52, 1148-1150.	0.9	3
149	Extended semiconducting behaviour of \$\$hbox {Ba}_{0.85}hbox {Sr}_{0.15}hbox {Ti}_{0.9}hbox {Fe}_{0.1}hbox {O}_3\$\$ Ba 0.85 Sr 0.15 Ti 0.9 Fe 0.1 O 3 thick films in large temperature range. Journal of Materials Science: Materials in Electronics, 2016, 27, 2096-2102.	1.1	3
150	Influence of the Structural Characteristics of Epitaxial TiO2 Thin Films on Their Photocatalytic Properties. Journal of Nanoscience and Nanotechnology, 2017, 17, 4326-4334.	0.9	3
151	Sputter deposition of superconducting 1-2-3/2-1-1 YBaCuO bilayers, characterization and etch-patterning procedure. Materials Letters, 1989, 8, 436-440.	1.3	2
152	Microstructures and precipitates in laser-ablated YBCO thin films on SrTiO3 (110). Journal of Alloys and Compounds, 1993, 195, 93-96.	2.8	2
153	Experimental results on a 38-GHz high-temperature superconducting microstrip antenna. Microwave and Optical Technology Letters, 1996, 13, 255-259.	0.9	2
154	KTN ferroelectric thin-films: Application to the realization of tunable microwave devices. , 2006, , .		2
155	Thermal stability of perfluorinated molecular monolayers immobilized on pulsed laser deposited amorphous carbon surfaces. IOP Conference Series: Materials Science and Engineering, 2010, 16, 012003.	0.3	2
156	Randomly organized and self-assembled Na0.5Bi0.5TiO3 nanodots elaborated by sol–gel and pulsed laser deposition routes. Materials Letters, 2013, 107, 299-302.	1.3	2
157	Photoluminescence in Alkaline Earth Stannate Thin Films Grown by Physical and Chemical Methods. Engineering Materials, 2021, , 155-183.	0.3	2
158	High frequency broadband characterization of metal/high Tc superconducting coplanar structures. Journal of Alloys and Compounds, 1993, 195, 715-718.	2.8	1
159	PbMo6S8 thin films grown on Mo seed layers epitaxied on (100)MgO substrates. Physica C: Superconductivity and Its Applications, 1994, 235-240, 773-774.	0.6	1
160	Optical and transport measurements of YBa2Cu3O6+x thin films (0.38â‰☎â‰⊉). Physica C: Superconductivity and Its Applications, 1994, 235-240, 1431-1432.	0.6	1
161	Structural characterization of epitaxial Cu2Mo6S8 thin films grown on R-cut sapphire by pulsed laser deposition. Thin Solid Films, 1999, 353, 62-66.	0.8	1
162	Structural comparative study by RBS and XPD of stoichiometric and Bi-deficient SrBi2Nb2O9 thin films epitaxially grown on (100)SrTiO3. Surface Science, 2004, 569, 125-141.	0.8	1

#	Article	IF	CITATIONS
163	Structure of non-stoichiometric Sr–Bi–Nb–O thin films grown by PLD. Journal of Crystal Growth, 2005, 275, e2493-e2498.	0.7	1
164	Study of planar transmission lines printed on a ferroelectric thin Film: Optimum tunability and figure of merit. , 2006, , .		1
165	Wide-Band Characterization of Ferroelectric Thin-Films: Applications to KTN-based Microwave Agile Devices. , 2006, , .		1
166	Reconfigurable circuits for wireless applications using KTN ferroelectrics. , 2007, , .		1
167	Control of composition and structure of ferroelectric oxide thin films grown by pulsed laser deposition. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3293-3297.	0.8	1
168	Characterization in a Wide Frequency Range (40ÂMHz–67ÂGHz) of a KTa0.65Nb0.35O3 Thin Film for Tunable Applications. Integrated Ferroelectrics, 2014, 158, 52-61.	0.3	1
169	A Twofold Approach in Loss Reduction of KTa _{0.5} Nb _{0.5} O ₃ Ferroelectric Layers for Low-Loss Tunable Devices at Microwaves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 665-671.	1.7	1
170	Complex Epitaxy of Tetragonal Tungsten Bronze K–Ta–Nb–O Nanorods. Crystal Growth and Design, 2020, 20, 2356-2366.	1.4	1
171	Influence of Nd Doping on the Properties of SrTiO ₃ thin Films Synthesized by PLD on Different Substrates. Current Physical Chemistry, 2013, 3, 392-399.	0.1	1
172	Dielectric relaxations in non-metallic materials related to Y-Ba-Cu-O superconductors. Journal of the Less Common Metals, 1990, 164-165, 1232-1239.	0.9	0
173	Relationship between frequency and temperature dependence of the carrier scattering rate in the normal state of YBa2Cu3O7 thin films. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1429-1430.	0.6	0
174	Influence of halogenation on superconducting properties of oxygen-deficient YBa2Cu3Ox thin films Physica C: Superconductivity and Its Applications, 1998, 299, 197-204.	0.6	0
175	Magnetic behaviour of chemically disordered YBa2Cu3O7â^îFx thin films. Solid State Communications, 2000, 115, 167-171.	0.9	Ο
176	In-Plane Tunability of Coplanar Microwave Devices by SrBi ₂ Nb ₂ O ₉ Ferroelectric Thin Films. Ferroelectrics, 2008, 362, 41-47.	0.3	0
177	Magnetic properties of epitaxial thin films and bulk of Eu(Ni,Mn)O3 perovskites. Thin Solid Films, 2010, 518, 4718-4720.	0.8	0
178	Performance of frequency-agile CPW resonators on thin film ferroelectric material. , 2012, , .		0
179	Epitaxial growth and properties of lead-free ferroelectric Na <inf>0.5</inf> Bi <inf>0.5</inf> TiO <inf>3</inf> thin films grown by pulsed laser deposition on various single crystal substrates. , 2012, , .		0
180	Refined Characterization Up to Millimeter Waves of Ferroelectric KTN Thin Film for Efficient Integrated Tunable Devices. ECS Transactions, 2013, 58, 237-242.	0.3	0

#	Article	IF	CITATIONS
181	Tunable stub resonators on KTN ferroelectric thin films. , 2007, , .		0
182	EPITAXIAL YBa2Cu3O7 and GdBa2Cu3O7 THIN FILMS GROWN IN-SITU BY SINGLE TARGET D.C. SPUTTERING. , 1990, , 336-343.		0
183	LASER GROWN THIN FILMS OF (RE)Ba2Cu3O7: SURFACE AND IN-PLANE STRUCTURAL DETERMINATION BY RHEED AND WEISSENBERG TECHNIQUES. , 1992, , 295-300.		0