Giulio Gabbiani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1328038/publications.pdf Version: 2024-02-01

		172207	243296
49	10,284	29	44
papers	citations	h-index	g-index
323	323	323	10578
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The myofibroblast: Role in fibrosis development. , 2022, , 87-97.		Ο
2	50ÂYears of Myofibroblasts: How the Myofibroblast Concept Evolved. Methods in Molecular Biology, 2021, 2299, 1-5.	0.4	12
3	Comments on the manuscript of Dr. J M Orenstein. Ultrastructural Pathology, 2020, 44, 15-16.	0.4	0
4	Fascia Is Able to Actively Contract and May Thereby Influence Musculoskeletal Dynamics: A Histochemical and Mechanographic Investigation. Frontiers in Physiology, 2019, 10, 336.	1.3	77
5	Sudden coronary death in the young: Evidence of contractile phenotype of smooth muscle cells in the culprit atherosclerotic plaque. International Journal of Cardiology, 2018, 264, 1-6.	0.8	16
6	The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Research, 2016, 5, 752.	0.8	209
7	Monoclonal antibodies against muscle actin isoforms: epitope identification and analysis of isoform expression by immunoblot and immunostaining in normal and regenerating skeletal muscle. F1000Research, 2016, 5, 416.	0.8	14
8	Monoclonal antibodies against muscle actin isoforms: epitope identification and analysis of isoform expression by immunoblot and immunostaining in normal and regenerating skeletal muscle. F1000Research, 2016, 5, 416.	0.8	13
9	Stable incorporation of αâ€smooth muscle actin into stress fibers is dependent on specific tropomyosin isoforms. Cytoskeleton, 2015, 72, 257-267.	1.0	29
10	The prehistory of the cytoskeleton concept. Cytoskeleton, 2014, 71, 464-471.	1.0	12
11	Recent Developments in Myofibroblast Biology. American Journal of Pathology, 2012, 180, 1340-1355.	1.9	1,043
12	Heterogeneity of Smooth Muscle. , 2012, , 1183-1195.		6
13	β- and γ-cytoplasmic actins display distinct distribution and functional diversity. Journal of Cell Science, 2009, 122, 2980-2988.	1.2	196
14	Corrigendum to "Cytostatic drugs differentially affect phenotypic features of porcine coronary artery smooth muscle cell populations―[FEBS Lett. 581 (2007) 5847-5851]. FEBS Letters, 2008, 582, 840-840.	1.3	0
15	Intimal Smooth Muscle Cells of Porcine and Human Coronary Artery Express S100A4, a Marker of the Rhomboid Phenotype In Vitro. Circulation Research, 2007, 100, 1055-1062.	2.0	101
16	Contraction of myofibroblasts in granulation tissue is dependent on Rho/Rho kinase/myosin light chain phosphatase activity. Wound Repair and Regeneration, 2006, 14, 313-320.	1.5	86
17	Phenotypic Modulation of Intima and Media Smooth Muscle Cells in Fatal Cases of Coronary Artery Lesion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 326-332.	1.1	113
18	Actin isoform pattern expression: a tool for the diagnosis and biological characterization of human rhabdomyosarcoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2003, 442, 31-38.	1.4	23

GIULIO GABBIANI

#	Article	IF	CITATIONS
19	The NH2-terminal peptide of α–smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. Journal of Cell Biology, 2002, 157, 657-663.	2.3	215
20	Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology, 2002, 3, 349-363.	16.1	3,539
21	Regulation of ?-smooth muscle actin and CRBP-1 expression by retinoic acid and TGF-? in cultured fibroblasts. Journal of Cellular Physiology, 2001, 187, 315-325.	2.0	29
22	Alpha-Smooth Muscle Actin Expression Upregulates Fibroblast Contractile Activity. Molecular Biology of the Cell, 2001, 12, 2730-2741.	0.9	1,076
23	Cultured Arterial Smooth Muscle Cells Maintain Distinct Phenotypes When Implanted Into Carotid Artery. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 949-954.	1.1	24
24	Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. Journal of Cell Science, 2001, 114, 3285-3296.	1.2	255
25	Cell coupling modulates the contraction of fibroblast-populated collagen lattices. , 2000, 184, 86-92.		53
26	Retinoids and Arterial Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1882-1888.	1.1	18
27	A Subpopulation of Cardiomyocytes Expressing α-Skeletal Actin Is Identified by a Specific Polyclonal Antibody. Circulation Research, 1999, 85, e51-8.	2.0	45
28	A histone deacetylase inhibitor, trichostatin A, suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture. Hepatology, 1999, 29, 858-867.	3.6	192
29	Actin isoforms in amphioxus Branchiostoma lanceolatum. Cell and Tissue Research, 1998, 292, 173-176.	1.5	4
30	The Fibronectin Domain ED-A Is Crucial for Myofibroblastic Phenotype Induction by Transforming Growth Factor-β1. Journal of Cell Biology, 1998, 142, 873-881.	2.3	741
31	Plasminogen Activator Expression in Rat Arterial Smooth Muscle Cells Depends on Their Phenotype and Is Modulated by Cytokines. Circulation Research, 1998, 82, 1086-1093.	2.0	42
32	Phenotypic Heterogeneity of Rat Arterial Smooth Muscle Cell Clones. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 815-820.	1.1	142
33	Modulation of fibroblastic cytoskeletal features during pathological situations: The role of extracellular matrix and cytokines. Cytoskeleton, 1994, 29, 195-203.	4.4	96
34	Cytoskeletal protein expression in planarians. Bollettino Di Zoologia, 1993, 60, 403-406.	0.3	2
35	Modulation of fibroblastic cytoskeletal features during wound healing and fibrosis. Bollettino Di Zoologia, 1993, 60, 399-401.	0.3	1
36	Cultured aortic smooth muscle cells from newborn and adult rats show distinct cytoskeletal features. Differentiation, 1992, 49, 175-185.	1.0	83

GIULIO GABBIANI

#	Article	IF	CITATIONS
37	Inhibition of rat hepatic lipocyte activation in culture by interferon-γ. Hepatology, 1992, 16, 776-784.	3.6	180
38	Expression of α-sooth-muscle actin in stromal cells of the uterine cervix during epithlial neoplastic changes. International Journal of Cancer, 1991, 47, 843-846.	2.3	67
39	Modulation of gelsolin content in rat aortic smooth muscle cells during development, experimental intimal thickening and culture. An immunohistochemical and biochemical study. FEBS Journal, 1990, 190, 559-565.	0.2	23
40	α-Smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation, 1988, 39, 161-166.	1.0	179
41	Correlation between the distribution of smooth muscle or non muscle myosins and ?-smooth muscle actin in normal and pathological soft tissues. Cytoskeleton, 1988, 11, 260-274.	4.4	94
42	Abnormal behavior of cultured fibroblasts from nodule and nonaffected aponeurosis of Dupuytren's disease. Journal of Cellular Physiology, 1983, 117, 353-361.	2.0	37
43	Effect of phalloidin on liver actin distribution, content, and turnover. Journal of Cellular Biochemistry, 1982, 20, 393-407.	1.2	9
44	Cellular distribution of sarcoplasmic calcium-binding proteins by immunofluorescence. Histochemistry, 1977, 51, 335-341.	1.9	14
45	Actin and tubulin co-cap with surface immunoglobulins in mouse B lymphocytes. Nature, 1977, 269, 697-698.	13.7	174
46	Malignant soft tissue tumors of probable histiocytic origin (malignant fibrous histiocytomas): General considerations and electron microscopic and tissue culture studies. Cancer, 1975, 35, 176-198.	2.0	480
47	"CONTRACTILE INTERSTITIAL CELLS" IN PULMONARY ALVEOLAR SEPTA: A POSSIBLE REGULATOR OF VENTILATION/PERFUSION RATIO?. Journal of Cell Biology, 1974, 60, 375-392.	2.3	347
48	Epithelioid sarcoma. A light and electron microscopic study suggesting a synovial origin. Cancer, 1972, 30, 486-499.	2.0	75
49	Synovial sarcomaElectron microscopic study of a typical case. Cancer, 1971, 28, 1031-1039.	2.0	97