Tomislav Cernava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1327682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbiome definition re-visited: old concepts and new challenges. Microbiome, 2020, 8, 103.	4.9	903
2	Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME Journal, 2015, 9, 412-424.	4.4	238
3	Bacterial seed endophyte shapes disease resistance in rice. Nature Plants, 2021, 7, 60-72.	4.7	220
4	Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L Frontiers in Microbiology, 2015, 6, 53.	1.5	196
5	Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant and Soil, 2016, 405, 125-140.	1.8	150
6	Understanding Microbial Multi-Species Symbioses. Frontiers in Microbiology, 2016, 7, 180.	1.5	140
7	Tomato Seeds Preferably Transmit Plant Beneficial Endophytes. Phytobiomes Journal, 2018, 2, 183-193.	1.4	124
8	Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology Advances, 2020, 40, 107520.	6.0	97
9	Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome, 2017, 5, 82.	4.9	91
10	Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks. Microbiome, 2019, 7, 108.	4.9	87
11	A novel assay for the detection of bioactive volatiles evaluated by screening of lichen-associated bacteria. Frontiers in Microbiology, 2015, 6, 398.	1.5	85
12	Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca) Tj ETQqO	0 0 ₄ .9BT /0	Dverlock 10 T
13	Differential sharing and distinct coâ€occurrence networks among spatially close bacterial microbiota of bark, mosses and lichens‬‬. Molecular Ecology, 2017, 26, 2826-2838.	2.0	79
14	Aerial Warfare: A Volatile Dialogue between the Plant Pathogen Verticillium longisporum and Its Antagonist Paenibacillus polymyxa. Frontiers in Plant Science, 2017, 8, 1294.	1.7	78
15	Microbiome Modulation—Toward a Better Understanding of Plant Microbiome Response to Microbial Inoculants. Frontiers in Microbiology, 2021, 12, 650610.	1.5	78
16	Microbiome-driven identification of microbial indicators for postharvest diseases of sugar beets. Microbiome, 2019, 7, 112.	4.9	68
17	Analyzing the antagonistic potential of the lichen microbiome against pathogens by bridging metagenomic with culture studies. Frontiers in Microbiology, 2015, 6, 620.	1.5	65

¹⁸ Microbiome approaches provide the key to biologically control postharvest pathogens and storability 1.3 54 of fruits and vegetables. FEMS Microbiology Ecology, 2020, 96, .

#	Article	IF	CITATIONS
19	Novel insights into plant-associated archaea and their functioning in arugula (Eruca sativa Mill.). Journal of Advanced Research, 2019, 19, 39-48.	4.4	49
20	Disease Incidence in Sugar Beet Fields Is Correlated with Microbial Diversity and Distinct Biological Markers. Phytobiomes Journal, 2019, 3, 22-30.	1.4	47
21	The tea leaf microbiome shows specific responses to chemical pesticides and biocontrol applications. Science of the Total Environment, 2019, 667, 33-40.	3.9	47
22	The microbiome of alpine snow algae shows a specific inter-kingdom connectivity and algae-bacteria interactions with supportive capacities. ISME Journal, 2020, 14, 2197-2210.	4.4	46
23	Bacterial communities in the plant phyllosphere harbour distinct responders to a broad-spectrum pesticide. Science of the Total Environment, 2021, 751, 141799.	3.9	46
24	Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts. Nature Microbiology, 2022, 7, 831-843.	5.9	44
25	Symbiotic Interplay of Fungi, Algae, and Bacteria within the Lung Lichen <i>Lobaria pulmonaria</i> L. Hoffm. as Assessed by State-of-the-Art Metaproteomics. Journal of Proteome Research, 2017, 16, 2160-2173.	1.8	43
26	Microbiota Associated with Sclerotia of Soilborne Fungal Pathogens – A Novel Source of Biocontrol Agents Producing Bioactive Volatiles. Phytobiomes Journal, 2019, 3, 125-136.	1.4	41
27	Endophytic Fungi of Native Salvia abrotanoides Plants Reveal High Taxonomic Diversity and Unique Profiles of Secondary Metabolites. Frontiers in Microbiology, 2019, 10, 3013.	1.5	40
28	Plasticity of a holobiont: desiccation induces fasting-like metabolism within the lichen microbiota. ISME Journal, 2019, 13, 547-556.	4.4	37
29	Post-translational regulation of autophagy is involved in intra-microbiome suppression of fungal pathogens. Microbiome, 2021, 9, 131.	4.9	36
30	Nicotiana tabacum seed endophytic communities share a common core structure and genotype-specific signatures in diverging cultivars. Computational and Structural Biotechnology Journal, 2020, 18, 287-295.	1.9	35
31	Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environmental Science and Ecotechnology, 2020, 4, 100061.	6.7	34
32	Plant resistome profiling in evolutionary old bog vegetation provides new clues to understand emergence of multi-resistance. ISME Journal, 2021, 15, 921-937.	4.4	33
33	Unraveling the Complexity of Soil Microbiomes in a Large-Scale Study Subjected to Different Agricultural Management in Styria. Frontiers in Microbiology, 2020, 11, 1052.	1.5	32
34	The plant microbiota signature of the Anthropocene as a challenge for microbiome research. Microbiome, 2022, 10, 54.	4.9	32
35	Tomato-Associated Archaea Show a Cultivar-Specific Rhizosphere Effect but an Unspecific Transmission by Seeds. Phytobiomes Journal, 2020, 4, 133-141.	1.4	31
36	Insights into the community structure and lifestyle of the fungal root endophytes of tomato by combining amplicon sequencing and isolation approaches with phytohormone profiling. FEMS Microbiology Ecology, 2020, 96, .	1.3	31

#	Article	IF	CITATIONS
37	GrapeNet: A Lightweight Convolutional Neural Network Model for Identification of Grape Leaf Diseases. Agriculture (Switzerland), 2022, 12, 887.	1.4	30
38	Bog ecosystems as a playground for plant–microbe coevolution: bryophytes and vascular plants harbour functionally adapted bacteria. Microbiome, 2021, 9, 170.	4.9	28
39	Replacing conventional decontamination of hatching eggs with a natural defense strategy based on antimicrobial, volatile pyrazines. Scientific Reports, 2017, 7, 13253.	1.6	27
40	The Role of Volatile Organic Compounds and Rhizosphere Competence in Mode of Action of the Non-pathogenic Fusarium oxysporum FO12 Toward Verticillium Wilt. Frontiers in Microbiology, 2019, 10, 1808.	1.5	27
41	Plant Growth-Promoting Methylobacteria Selectively Increase the Biomass of Biotechnologically Relevant Microalgae. Frontiers in Microbiology, 2020, 11, 427.	1.5	26
42	Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. Journal of Advanced Research, 2022, 39, 49-60.	4.4	24
43	Profiling for Bioactive Peptides and Volatiles of Plant Growth Promoting Strains of the Bacillus subtilis Complex of Industrial Relevance. Frontiers in Microbiology, 2020, 11, 1432.	1.5	22
44	Arthrobacter is a universal responder to di-n-butyl phthalate (DBP) contamination in soils from various geographical locations. Journal of Hazardous Materials, 2022, 422, 126914.	6.5	19
45	Insights into the microbiome assembly during different growth stages and storage of strawberry plants. Environmental Microbiomes, 2022, 17, 21.	2.2	18
46	High Life Expectancy of Bacteria on Lichens. Microbial Ecology, 2016, 72, 510-513.	1.4	17
47	First evaluation of alkylpyrazine application as a novel method to decrease microbial contaminations in processed meat products. AMB Express, 2018, 8, 54.	1.4	17
48	Enhanced survival of multi-species biofilms under stress is promoted by low-abundant but antimicrobial-resistant keystone species. Journal of Hazardous Materials, 2022, 422, 126836.	6.5	17
49	Adaptions of Lichen Microbiota Functioning Under Persistent Exposure to Arsenic Contamination. Frontiers in Microbiology, 2018, 9, 2959.	1.5	16
50	Conventional seed coating reduces prevalence of proteobacterial endophytes in Nicotiana tabacum. Industrial Crops and Products, 2020, 155, 112784.	2.5	16
51	Microbiome Structure of the Aphid Myzus persicae (Sulzer) Is Shaped by Different Solanaceae Plant Diets. Frontiers in Microbiology, 2021, 12, 667257.	1.5	16
52	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	15
53	A novel, nature-based alternative for photobioreactor decontaminations. Scientific Reports, 2019, 9, 2864.	1.6	14
54	Trichomes form genotype-specific microbial hotspots in the phyllosphere of tomato. Environmental Microbiomes, 2020, 15, 17.	2.2	14

#	Article	IF	CITATIONS
55	Occurrence of green mold disease on Dictyophora rubrovolvata caused by Trichoderma koningiopsis. Journal of Plant Pathology, 2021, 103, 981-984.	0.6	14
56	Fusaricidins, Polymyxins and Volatiles Produced by Paenibacillus polymyxa Strains DSM 32871 and M1. Pathogens, 2021, 10, 1485.	1.2	14
57	The emergence of diseaseâ€preventing bacteria within the plant microbiota. Environmental Microbiology, 2022, 24, 3259-3263.	1.8	14
58	The <i>Brassica napus</i> seed microbiota is cultivarâ€specific and transmitted via paternal breeding lines. Microbial Biotechnology, 2022, 15, 2379-2390.	2.0	14
59	Antimicrobial-specific response from resistance gene carriers studied in a natural, highly diverse microbiome. Microbiome, 2021, 9, 29.	4.9	13
60	Identification of Volatile Organic Compounds Emitted by Two Beneficial Endophytic Pseudomonas Strains from Olive Roots. Plants, 2022, 11, 318.	1.6	13
61	Metadata harmonization–Standards are the key for a better usage of omics data for integrative microbiome analysis. Environmental Microbiomes, 2022, 17, .	2.2	13
62	Exploration of Intrinsic Microbial Community Modulators in the Rice Endosphere Indicates a Key Role of Distinct Bacterial Taxa Across Different Cultivars. Frontiers in Microbiology, 2021, 12, 629852.	1.5	11
63	Reprogramming of phytopathogen transcriptome by a non-bactericidal pesticide residue alleviates its virulence in rice. Fundamental Research, 2022, 2, 198-207.	1.6	11
64	Implications of carbon catabolite repression for plant–microbe interactions. Plant Communications, 2022, 3, 100272.	3.6	11
65	Understanding the Indigenous Seed Microbiota to Design Bacterial Seed Treatments. , 2019, , 83-99.		10
66	Microbiome-guided evaluation of Bacillus subtilis BIOUFLA2 application to reduce mycotoxins in maize kernels. Biological Control, 2020, 150, 104370.	1.4	10
67	Identification of new eligible indicator organisms for combined sewer overflow via 16S rRNA gene amplicon sequencing in Kanda River, Tokyo. Journal of Environmental Management, 2021, 284, 112059.	3.8	10
68	Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Frontiers in Microbiology, 0, 13, .	1.5	10
69	First Report of Black Rot on Walnut Fruits Caused by <i>Neofusicoccum parvum</i> in China. Plant Disease, 2019, 103, 3275-3275.	0.7	9
70	Phyllosphere-associated microbiota in built environment: Do they have the potential to antagonize human pathogens?. Journal of Advanced Research, 2023, 43, 109-121.	4.4	9
71	The Himalayan Onion (Allium wallichii Kunth) Harbors Unique Spatially Organized Bacterial Communities. Microbial Ecology, 2021, 82, 909-918.	1.4	8
72	Bacterial-fungal interactions under agricultural settings: from physical to chemical interactions. Stress Biology, 2022, 2, .	1.5	7

#	Article	IF	CITATIONS
73	First Report of Leaf Spot on <i>Chenopodium album</i> Caused by <i>Nigrospora pyriformis</i> in China. Plant Disease, 2020, 104, 1872.	0.7	6
74	9 Lichen–Bacterial Interactions. , 2016, , 179-188.		5
75	Bacteriome and Mycobiome in <i>Nicotiana tabacum</i> Fields Affected by Black Shank Disease. Plant Disease, 2020, 104, 315-319.	0.7	5
76	Editorial: Novel Insights Into the Response of the Plant Microbiome to Abiotic Factors. Frontiers in Plant Science, 2021, 12, 607874.	1.7	5
77	How microbiome studies could further improve biological control. Biological Control, 2021, 160, 104669.	1.4	5
78	How Microbiome Approaches Can Assist Industrial Development of Biological Control Products. Progress in Biological Control, 2020, , 201-215.	0.5	5
79	Recovery of metagenome-assembled genomes from the phyllosphere of 110 rice genotypes. Scientific Data, 2022, 9, .	2.4	5
80	First Report of Passion Fruit Leaf Blight Caused by <i>Nigrospora sphaerica</i> in China. Plant Disease, 2022, 106, 323.	0.7	4
81	The Influence of Temperature and Host Gender on Bacterial Communities in the Asian Citrus Psyllid. Insects, 2021, 12, 1054.	1.0	4
82	Assembly of Bacterial Genomes from the Metagenomes of Three Lichen Species. Microbiology Resource Announcements, 2020, 9, .	0.3	3
83	Microbiome-Guided Exploration of the Microbial Assemblage of the Exotic Beverage "Insect Tea―Native to Southwestern China. Frontiers in Microbiology, 2020, 10, 3087.	1.5	2
84	First report of Camellia oleifera leaf blight caused by Nigrospora chinensis. Journal of Plant Pathology, 2021, 103, 711-712.	0.6	2
85	First Report of Leaf Spots on <i>Photinia serrulata</i> Caused by <i>Nigrospora oryzae</i> in China. Plant Disease, 2019, 103, 2480-2480.	0.7	2
86	Using Bacteria-Derived Volatile Organic Compounds (VOCs) for Industrial Processes. , 2020, , 305-316.		2
87	First Report of Green Mold Disease Caused by <i>Penicillium citrinum</i> on <i>Dictyophora rubrovolvata</i> in China. Plant Disease, 2023, 107, 966.	0.7	2
88	Reconstruction of Bacterial Metagenome-Assembled Genome Sequences from Alpine Bog Vegetation. Microbiology Resource Announcements, 2020, 9, .	0.3	1
89	Explorative assessment of coronavirus-like short sequences from host-associated and environmental metagenomes. Science of the Total Environment, 2021, 793, 148494.	3.9	0
90	From seeds to postharvest: the impact of the plant microbiome on health: a review. Acta Horticulturae, 2021, , 189-194.	0.1	0

#	Article	IF	CITATIONS
91	Advances in understanding modes of action of microbial bioprotectants. Burleigh Dodds Series in Agricultural Science, 2021, , 3-32.	0.1	0
92	On-field microbial community influences postharvest root rot in sugar beets. Acta Horticulturae, 2021, , 309-316.	0.1	0
93	The seed's hidden defense arsenal: using bacteria to defend against disease. TheScienceBreaker, 2022, 08, .	0.0	0