Maguy Jaber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1327518/publications.pdf

Version: 2024-02-01

		117625	189892
119	3,506	34	50
papers	citations	h-index	g-index
125	125	125	4019
125	123	125	4018
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Shedding Light on Functional Hybrid Nanocomposites 19th Century Paint Medium. Advanced Functional Materials, 2022, 32, 2106346.	14.9	3
2	Connecting Rheological Properties and Molecular Dynamics of Egg‶empera Paints based on Egg Yolk. Angewandte Chemie - International Edition, 2022, 61, .	13.8	3
3	The versatility of montmorillonite in water remediation using adsorption: Current studies and challenges in drug removal. Journal of Environmental Chemical Engineering, 2022, 10, 107341.	6.7	21
4	Functionalization of the hydroxyapatite surface with ZnO for alizarin immobilization. Applied Surface Science, 2022, , 153412.	6.1	3
5	Designing photochromatic pigments based on clay minerals and spiropyran. Dyes and Pigments, 2022, 204, 110358.	3.7	3
6	Zn-doped mesoporous hydroxyapatites and their antimicrobial properties. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111471.	5.0	23
7	Green earth pigments dispersions: Water dynamics at the interfaces. Journal of Colloid and Interface Science, 2021, 581, 644-655.	9.4	5
8	ZnO/bentonite Hybrids Obtained by a Simple Method of Synthesis and Applied as Catalyst for Biodiesel Production. Engineering Materials, 2021, , 1-25.	0.6	2
9	Inorganic-organic hybrid pigments based on carminic acid and clay minerals. Dyes and Pigments, 2021, 190, 109306.	3.7	20
10	When RNA meets montmorillonite: Influence of the pH and divalent cations. Applied Clay Science, 2021, 214, 106234.	5.2	15
11	Aminopropyl bentonites obtained by microwave-assisted silylation for copper removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127557.	4.7	3
12	Monitoring diclofenac adsorption by organophilic alkylpyridinium bentonites. Chemosphere, 2020, 242, 125109.	8.2	63
13	Influence of phyllosilicates on the hydrothermal alteration of organic matter in asteroids: Experimental perspectives. Geochimica Et Cosmochimica Acta, 2020, 269, 150-166.	3.9	28
14	Revisiting the identification of commercial and historical green earth pigments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 124035.	4.7	22
15	Complementarity of Density Functional Theory and Nuclear Magnetic Resonance Tools To Probe the Nano-Layered Silicates Surface Chemistry and Morphology. Journal of Physical Chemistry C, 2020, 124, 267-286.	3.1	4
16	Through alizarin-hectorite pigments: Influence of organofunctionalization on fading. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124323.	4.7	11
17	Green Earth pigments aqueous dispersions: NMR relaxation rates dataset. Data in Brief, 2020, 32, 106270.	1.0	3
18	Impact of Phyllosilicates on Amino Acid Formation under Asteroidal Conditions. ACS Earth and Space Chemistry, 2020, 4, 1398-1407.	2.7	25

#	Article	IF	Citations
19	Saponite-anthocyanin pigments: Slipping between the sheets. Microporous and Mesoporous Materials, 2020, 300, 110148.	4.4	15
20	Amino hydroxyapatite/chitosan hybrids reticulated with glutaraldehyde at different pH values and their use for diclofenac removal. Carbohydrate Polymers, 2020, 236, 116036.	10.2	48
21	Thermal analysis of carbonate pigments and linseed oil to optimize CO2 extraction for radiocarbon dating of lead white paintings. Microchemical Journal, 2020, 154, 104637.	4.5	19
22	A comparative study of alanine adsorption and condensation to peptides in two clay minerals. Applied Clay Science, 2020, 192, 105617.	5.2	16
23	Saponite-anthocyanin derivatives: The role of organoclays in pigment photostability. Applied Clay Science, 2020, 191, 105604.	5.2	29
24	Influence of the nature of the gas phase on the degradation of RNA during fossilization processes. Applied Clay Science, 2020, 191, 105616.	5.2	8
25	Modulating the structure of organofunctionalized hydroxyapatite/tripolyphosphate/chitosan spheres for dye removal. Journal of Environmental Chemical Engineering, 2020, 8, 103980.	6.7	19
26	New Insights into the Structure and Degradation of Alizarin Lake Pigments: Input of the Surface Study Approach. Journal of Physical Chemistry C, 2020, 124, 12370-12380.	3.1	13
27	UV Irradiation and Near Infrared Characterization of Laboratory Mars Soil Analog Samples. Frontiers in Astronomy and Space Sciences, 2020, 7, .	2.8	8
28	New pigments based on carminic acid and smectites: A molecular investigation. Dyes and Pigments, 2019, 160, 971-982.	3.7	56
29	The Photochemistry on Space Station (PSS) Experiment: Organic Matter under Mars-like Surface UV Radiation Conditions in Low Earth Orbit. Astrobiology, 2019, 19, 1037-1052.	3.0	16
30	The Interaction between Surfactants and Montmorillonite and its Influence on the Properties of Organo-Montmorillonite in Oil-Based Drilling FluIDS. Clays and Clay Minerals, 2019, 67, 190-208.	1.3	11
31	Functionalized bentonites for dye adsorption: Depollution and production of new pigments. Journal of Environmental Chemical Engineering, 2019, 7, 103333.	6.7	28
32	How the acido-basic properties of Mg silicates and clays govern the catalytic mechanism of transesterification reactions. Catalysis Science and Technology, 2019, 9, 6072-6084.	4.1	10
33	Understanding the interactions between ranitidine and magadiite: Influence of the interlayer cation. Chemosphere, 2019, 222, 980-990.	8.2	16
34	Confinement and Time Immemorial: Prebiotic Synthesis of Nucleotides on a Porous Mineral Nanoreactor. Journal of Physical Chemistry Letters, 2019, 10, 4192-4196.	4.6	6
35	Organoclays used as colloidal and rheological additives in oil-based drilling fluids: An overview. Applied Clay Science, 2019, 177, 63-81.	5.2	56
36	A new durable pigment with hydrophobic surface based on natural nanotubes and indigo: Interactions and stability. Journal of Colloid and Interface Science, 2019, 552, 204-217.	9.4	30

#	Article	IF	CITATIONS
37	Dressing protective clothing: stabilizing alizarin/halloysite hybrid pigment and beyond. Dyes and Pigments, 2019, 166, 32-41.	3.7	27
38	The degradation of organic compounds impacts the crystallization of clay minerals and vice versa. Scientific Reports, 2019, 9, 20251.	3.3	12
39	Microwave bentonite silylation for dye removal: Influence of the solvent. Applied Clay Science, 2019, 168, 478-487.	5.2	27
40	Thiabendazole/bentonites hybrids as controlled release systems. Colloids and Surfaces B: Biointerfaces, 2019, 176, 249-255.	5.0	40
41	One Step up the Ladder of Prebiotic Complexity: Formation of Nonrandom Linear Polypeptides from Binary Systems of Amino Acids on Silica. Chemistry - A European Journal, 2019, 25, 1275-1285.	3.3	16
42	Going through the wine fining: Intimate dialogue between organics and clays. Colloids and Surfaces B: Biointerfaces, 2018, 166, 79-88.	5.0	16
43	Dual role of layered double hydroxide nanocomposites on antibacterial activity and degradation of tetracycline and oxytetracyline. Chemosphere, 2018, 206, 175-183.	8.2	31
44	Cyanobacterial formation of intracellular Caâ€carbonates in undersaturated solutions. Geobiology, 2018, 16, 49-61.	2.4	42
45	Protein adsorption on clay minerals. Developments in Clay Science, 2018, , 255-288.	0.5	9
46	Organophilic bentonites obtained by microwave heating as adsorbents for anionic dyes. Journal of Environmental Chemical Engineering, 2018, 6, 7080-7090.	6.7	42
47	When anthraquinone dyes meet pillared montmorillonite: Stability or fading upon exposure to light?. Dyes and Pigments, 2018, 159, 384-394.	3.7	47
48	Potential Role of Inorganic Confined Environments in Prebiotic Phosphorylation. Life, 2018, 8, 7.	2.4	25
49	Enhancing the rheological properties and thermal stability of oil-based drilling fluids by synergetic use of organo-montmorillonite and organo-sepiolite. Applied Clay Science, 2018, 161, 505-512.	5.2	47
50	A 19th Century "Ideal―Oil Paint Medium: A Complex Hybrid Organic–Inorganic Gel. Angewandte Chemie, 2017, 129, 1641-1645.	2.0	4
51	A 19th Century "Ideal―Oil Paint Medium: A Complex Hybrid Organic–Inorganic Gel. Angewandte Chemie - International Edition, 2017, 56, 1619-1623.	13.8	20
52	Influence of acid–base properties of Mg-based catalysts on transesterification: role of magnesium silicate hydrate formation. Catalysis Science and Technology, 2017, 7, 1701-1712.	4.1	25
53	Analysis of carbon and nitrogen signatures with laser-induced breakdown spectroscopy; the quest for organics under Mars-like conditions. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 131, 8-17.	2.9	25
54	Green biosorbents based on chitosan-montmorillonite beads for anionic dye removal. Journal of Environmental Chemical Engineering, 2017, 5, 3309-3318.	6.7	89

#	Article	lF	CITATIONS
55	Phosphoribosyl Pyrophosphate: A Molecular Vestige of the Origin of Life on Minerals. Angewandte Chemie - International Edition, 2017, 56, 7920-7923.	13.8	37
56	Phosphoribosyl Pyrophosphate: A Molecular Vestige of the Origin of Life on Minerals. Angewandte Chemie, 2017, 129, 8028-8031.	2.0	16
57	Cysteine-montmorillonite composites for heavy metal cation complexation: A combined experimental and theoretical study. Chemical Engineering Journal, 2017, 314, 406-417.	12.7	68
58	Comparative study on the structures and properties of organo-montmorillonite and organo-palygorskite in oil-based drilling fluids. Journal of Industrial and Engineering Chemistry, 2017, 56, 248-257.	5 . 8	36
59	Mesoporous calcium phosphate using casein as a template: Application to bovine serum albumin sorption. Colloids and Surfaces B: Biointerfaces, 2017, 158, 480-487.	5.0	19
60	Proton irradiation: a key to the challenge of N-glycosidic bond formation in a prebiotic context. Scientific Reports, 2017, 7, 14709.	3.3	35
61	Adsorption and photophysical properties of fluorescent dyes over montmorillonite and saponite modified by surfactant. Chemosphere, 2017, 184, 1355-1361.	8.2	67
62	Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides. European Journal of Inorganic Chemistry, 2017, 2017, 198-211.	2.0	16
63	Physico-chemical characterization of lake pigments based on montmorillonite and carminic acid. Applied Clay Science, 2016, 130, 12-17.	5.2	46
64	Selective Uptake of Alkaline Earth Metals by Cyanobacteria Forming Intracellular Carbonates. Environmental Science & Environme	10.0	47
65	Thermal Behavior of <scp>d</scp> â€Ribose Adsorbed on Silica: Effect of Inorganic Salt Coadsorption and Significance for Prebiotic Chemistry. Chemistry - A European Journal, 2016, 22, 15834-15846.	3.3	15
66	The Mosaic Structure of Zeolite Crystals. Angewandte Chemie - International Edition, 2016, 55, 15049-15052.	13.8	88
67	Fluorescence Quenching of SulfoÂrhodamine Dye over Graphene Oxide and Boron Nitride Nanosheets. European Journal of Inorganic Chemistry, 2016, 2016, 2125-2130.	2.0	25
68	Alâ€"Mn-silicate nanobubbles phase as an intermediate in zeolite formation. Applied Clay Science, 2016, 123, 202-209.	5,2	1
69	Silylation of leached-vermiculites following reaction with imidazole and copper sorption behavior. Journal of Hazardous Materials, 2016, 306, 406-418.	12.4	20
70	Characterization of Phosphate Species on Hydrated Anatase TiO2 Surfaces. Langmuir, 2016, 32, 997-1008.	3 . 5	18
71	Melanin Polymerization Held in Check: A Composite of Dihydroxyphenylalanine with Zeolite Beta. Journal of Physical Chemistry C, 2015, 119, 8736-8747.	3.1	13
72	Nanosized microporous crystals: emerging applications. Chemical Society Reviews, 2015, 44, 7207-7233.	38.1	291

#	Article	IF	CITATIONS
73	In vitro synthesis of amorphous Mg-, Ca-, Sr- and Ba-carbonates: What do we learn about intracellular calcification by cyanobacteria?. Geochimica Et Cosmochimica Acta, 2015, 161, 36-49.	3.9	44
74	Effect of Nontronite Smectite Clay on the Chemical Evolution of Several Organic Molecules under Simulated Martian Surface Ultraviolet Radiation Conditions. Astrobiology, 2015, 15, 221-237.	3.0	49
75	Stabilization of ribofuranose by a mineral surface. Carbohydrate Research, 2015, 402, 241-244.	2.3	21
76	Structural studies of adsorbed protein (betalactoglobulin) on natural clay (montmorillonite). RSC Advances, 2014, 4, 61096-61103.	3.6	31
77	Thermal conductivity of heat treated mesoporous silica particles. Microporous and Mesoporous Materials, 2014, 190, 109-116.	4.4	26
78	Selectivities in Adsorption and Peptidic Condensation in the (Arginine and Glutamic) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50	542 Td (Acid
79	Mn-analcime: Synthesis, characterization and application to cyclohexene oxidation. Microporous and Mesoporous Materials, 2014, 196, 158-164.	4.4	25
80	Direct grafting of ethylene sulfide onto silicic acid magadiite. Microporous and Mesoporous Materials, 2014, 196, 292-299.	4.4	12
81	BSA and lysozyme adsorption on homoionic montmorillonite: Influence of the interlayer cation. Applied Clay Science, 2014, 95, 396-402.	5.2	59
82	Synthesis of texturally biphasic mesoporous carbon-silica composites and carbons. Microporous and Mesoporous Materials, 2013, 173, 53-63.	4.4	12
83	Formation of Activated Biomolecules by Condensation on Mineral Surfaces – A Comparison of Peptide Bond Formation and Phosphate Condensation. Origins of Life and Evolution of Biospheres, 2013, 43, 429-443.	1.9	35
84	Structure, orientation and stability of lysozyme confined in layered materials. Soft Matter, 2013, 9, 3188.	2.7	42
85	Seeds-induced fluoride media synthesis of nanosized zeolite Beta crystals. Microporous and Mesoporous Materials, 2013, 177, 127-134.	4.4	35
86	Non-biological selectivity in amino acids polymerization on TiO2 nanoparticles. Amino Acids, 2013, 45, 403-406.	2.7	12
87	Synthesis of Clay Minerals. Developments in Clay Science, 2013, 5, 223-241.	0.5	15
88	Inorganic Phosphate and Nucleotides on Silica Surface: Condensation, Dismutation, and Phosphorylation. Journal of Physical Chemistry C, 2013, 117, 12579-12590.	3.1	36
89	A comparative study of the catalysis of peptide bond formation by oxide surfaces. Physical Chemistry Chemical Physics, 2013, 15, 13371.	2.8	55
90	Ex Situ X-ray Diffraction, X-ray Absorption Near Edge Structure, Electron Spin Resonance, and Transmission Electron Microscopy Study of the Hydrothermal Crystallization of Vanadium Oxide Nanotubes: An Insight into the Mechanism of Formation. Journal of Physical Chemistry C, 2012, 116, 25126-25136.	3.1	22

#	Article	IF	CITATIONS
91	Adsorption of <scp>I</scp> -DOPA Intercalated in Hydrated Na-Saponite Clay: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2012, 116, 26414-26421.	3.1	25
92	Contribution to the understanding of the formation mechanism of bimodal mesoporous MCM41-type silica with large defect cavities. Microporous and Mesoporous Materials, 2012, 153, 217-226.	4.4	16
93	Fate of L-DOPA in the Presence of Inorganic Matrices: Vectorization or Composite Material Formation?. Journal of Physical Chemistry C, 2011, 115, 19216-19225.	3.1	33
94	Glutamic Acid Adsorption and Transformations on Silica. Journal of Physical Chemistry C, 2011, 115, 21813-21825.	3.1	41
95	Aerosol-assisted self-assembly of hybrid Layered Double Hydroxide particles into spherical architectures. Journal of Colloid and Interface Science, 2011, 356, 566-572.	9.4	9
96	A New Nanocomposite: L-DOPA/Laponite. Journal of Physical Chemistry Letters, 2010, 1, 85-88.	4.6	54
97	Rapid and Direct Synthesis of Spherical Organotalc. Clays and Clay Minerals, 2009, 57, 35-39.	1.3	9
98	Framework Stabilization of Ge-Rich Zeolites via Postsynthesis Alumination. Journal of the American Chemical Society, 2009, 131, 16580-16586.	13.7	95
99	Laponite and hybrid surfactant/laponite particles processed as spheres by spray-drying. New Journal of Chemistry, 2009, 33, 1116.	2.8	47
100	Organoclays., 2009,, 31-49.		5
101	Synthesis, characterization and applications of 2:1 phyllosilicates and organophyllosilicates: Contribution of fluoride to study the octahedral sheet. Microporous and Mesoporous Materials, 2008, 107, 121-127.	4.4	39
102	Elaboration and characterisation of new mesoporous materials from diatomite and charcoal. Microporous and Mesoporous Materials, 2008, 107, 219-226.	4.4	102
103	Synthesis of new lamellar inorganic–organic talc-like hybrids. New Journal of Chemistry, 2008, 32, 407-412.	2.8	38
104	Green Nanocomposites: Synthesis and Characterization. Journal of Nanoscience and Nanotechnology, 2007, 7, 3207-3213.	0.9	19
105	Layered metal (II) and silico-phosphonate with ion exchange properties. Solid State Sciences, 2007, 9, 144-148.	3.2	14
106	Influence du milieu de synthÃ"se sur la cristallisation de saponite : proposition de mécanisme réactionnel en milieux acide et basique. Comptes Rendus Chimie, 2005, 8, 229-234.	0.5	25
107	Formation of organoclays by a one step synthesis. Solid State Sciences, 2005, 7, 610-615.	3.2	36
108	Vanadium Oxide Foams:  An Insight into the Structure of the Vanadium Oxide Walls. Chemistry of Materials, 2005, 17, 6395-6402.	6.7	30

#	Article	IF	CITATIONS
109	Heavy Metal Retention by Organoclays:Â Synthesis, Applications, and Retention Mechanism. Chemistry of Materials, 2005, 17, 5275-5281.	6.7	53
110	Vanadium Oxide Nanotubes: New Synthesis Route and Mechanism of Formation Materials Research Society Symposia Proceedings, 2004, 847, 460.	0.1	0
111	New lamellar Si-Al inorganic-organic hybrid material. Journal of Materials Science, 2004, 39, 1489-1490.	3.7	10
112	New range of Al–Mg organoclays with tailored hydrophobicity: incorporation of fluoride as a local probe to study the octahedral character. Microporous and Mesoporous Materials, 2003, 65, 155-163.	4.4	28
113	Mercaptopropyl Al–Mg phyllosilicate: Synthesis and Characterization by XRD, IR, and NMR. Chemistry Letters, 2002, 31, 954-955.	1.3	24
114	Synthesis and Characterisation of Organo Phyllosilicates Containing Both Si, Al, and Mg. Materials Research Society Symposia Proceedings, 2002, 726, 1.	0.1	2
115	A new Al,Mg-organoclay. New Journal of Chemistry, 2002, 26, 1597-1600.	2.8	47
116	Abiotic formation of organic biomorphs under diagenetic conditions. Geochemical Perspectives Letters, 0, 16, 40-46.	5.0	11
117	Experimental clues for detecting biosignatures on Mars. Geochemical Perspectives Letters, 0, , 28-33.	5.0	17
118	Connecting Rheological Properties and Molecular Dynamics of Eggâ€Tempera Paints based on Egg Yolk. Angewandte Chemie, 0, , .	2.0	0
119	Deadlocks of adenine ribonucleotides synthesis: Evaluation of adsorption and condensation reactions into a zeolite micropore space. Inorganic Chemistry Frontiers, 0, , .	6.0	O