Loris Barbieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1327293/publications.pdf

Version: 2024-02-01

623734 610901 42 697 14 24 h-index citations g-index papers 45 45 45 620 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	User-Centered Design of an Augmented Reality Tool for Smart Operator in Production Environment. Lecture Notes in Mechanical Engineering, 2022, , 125-132.	0.4	2
2	An Integrated Approach to Ensure Requirements Traceability During the Product Development Process. Lecture Notes in Mechanical Engineering, 2022, , 328-335.	0.4	0
3	A Fast Scanning System for Automatic 3D Object Reconstruction. Lecture Notes in Mechanical Engineering, 2022, , 229-236.	0.4	1
4	Performance-Driven Engineering Design Approaches Based on Generative Design and Topology Optimization Tools: A Comparative Study. Applied Sciences (Switzerland), 2022, 12, 2106.	2.5	14
5	Exhibit supports for sandstone artifacts designed through topology optimization and additive manufacturing techniques. Journal of Cultural Heritage, 2022, 55, 329-338.	3.3	1
6	An Augmented Reality inspection tool to support workers in Industry 4.0 environments. Computers in Industry, 2021, 127, 103412.	9.9	78
7	Underwater Power Tools for In Situ Preservation, Cleaning and Consolidation of Submerged Archaeological Remains. Journal of Marine Science and Engineering, 2021, 9, 676.	2.6	3
8	Dive in the Past: A Serious Game to Promote the Underwater Cultural Heritage of the Mediterranean Sea. Heritage, 2021, 4, 4001-4016.	1.9	4
9	Background-Aware Colorization Technique for Augmented Reality Applications. IEEE Access, 2021, 9, 161761-161772.	4.2	1
10	Virtual Reality with 360-Video Storytelling in Cultural Heritage: Study of Presence, Engagement, and Immersion. Sensors, 2020, 20, 5851.	3.8	57
11	Damage Indices and Photogrammetry for Decay Assessment of Stone-Built Cultural Heritage: The Case Study of the San Domenico Church Main Entrance Portal (South Calabria, Italy). Sustainability, 2020, 12, 5198.	3.2	30
12	A Mixed Reality system for the ergonomic assessment of industrial workstations. International Journal on Interactive Design and Manufacturing, 2020, 14, 805-812.	2.2	9
13	A Cooperative Monitoring System for Diver Global Localization and Operation Support. Lecture Notes in Mechanical Engineering, 2020, , 410-421.	0.4	O
14	A Handheld Mobile Augmented Reality Tool for On-Site Piping Assembly Inspection. Lecture Notes in Mechanical Engineering, 2020, , 129-139.	0.4	1
15	Design and Simulation of the Hull of a Small-Sized Autonomous Surface Vehicle for Seabed Mapping. Lecture Notes in Mechanical Engineering, 2020, , 422-431.	0.4	1
16	An augmented reality tool to detect and annotate design variations in an Industry 4.0 approach. International Journal of Advanced Manufacturing Technology, 2019, 105, 875-887.	3.0	41
17	Underwater augmented reality for improving the diving experience in submerged archaeological sites. Ocean Engineering, 2019, 190, 106487.	4.3	29
18	Enhancing learning and access to Underwater Cultural Heritage through digital technologies: the case study of the "Cala Minnola―shipwreck site. Digital Applications in Archaeology and Cultural Heritage, 2019, 13, e00103.	1.3	8

#	Article	IF	CITATIONS
19	Performance evaluation of underwater image pre-processing algorithms for the improvement of multi-view 3D reconstruction. Acta IMEKO (2012), 2019, 8, 69.	0.7	3
20	Design, prototyping and testing of a modular small-sized underwater robotic arm controlled through a Master-Slave approach. Ocean Engineering, 2018, 158, 253-262.	4.3	34
21	Virtual dives into the underwater archaeological treasures of South Italy. Virtual Reality, 2018, 22, 91-102.	6.1	38
22	User-centered design of a virtual reality exhibit for archaeological museums. International Journal on Interactive Design and Manufacturing, 2018, 12, 561-571.	2.2	33
23	Augmented reality visualization of scene depth for aiding ROV pilots in underwater manipulation. Ocean Engineering, 2018, 168, 140-154.	4.3	21
24	Virtual museum system evaluation through user studies. Journal of Cultural Heritage, 2017, 26, 101-108.	3.3	81
25	User-centered design of a Virtual Museum system: a case study. Lecture Notes in Mechanical Engineering, 2017, , 155-165.	0.4	5
26	Kinematic performances evaluation of a hydraulic underwater manipulator., 2017,,.		1
27	A VR system for the exploitation of underwater archaeological sites. , 2016, , .		5
28	The CoMAS Project: New Materials and Tools for Improving the <i>In situ</i> Documentation, Restoration, and Conservation of Underwater Archaeological Remains. Marine Technology Society Journal, 2016, 50, 108-118.	0.4	24
29	Virtual and Augmented Reality Tools to Improve the Exploitation of Underwater Archaeological Sites by Diver and Non-diver Tourists. Lecture Notes in Computer Science, 2016, , 269-280.	1.3	13
30	Project VISAS: Virtual and Augmented Exploitation of Submerged Archaeological Sitesâ€Overview and First Results. Marine Technology Society Journal, 2016, 50, 119-129.	0.4	34
31	Electromechanical devices for supporting the restoration of underwater archaeological artefacts. , 2015, , .		6
32	A ROV for supporting the planned maintenance in underwater archaeological sites. , 2015, , .		12
33	Effects of device obtrusion and tool-hand misalignment on user performance and stiffness perception in visuo-haptic mixed reality. International Journal of Human Computer Studies, 2014, 72, 846-859.	5.6	9
34	Mixed prototyping with configurable physical archetype for usability evaluation of product interfaces. Computers in Industry, 2013, 64, 310-323.	9.9	34
35	An Interactive Tool for the Participatory Design of Product Interface. , 2012, , .		5
36	Comparing Different Visuo-Haptic Environments for Virtual Prototyping Applications., 2011,,.		1

#	Article	IF	CITATIONS
37	Integration of topology optimisation tools and knowledge management into the virtual Product Development Process of automotive components. International Journal of Product Development, 2011, 14, 14.	0.2	3
38	Methodology and Tools to Support Knowledge Management in Topology Optimization. Journal of Computing and Information Science in Engineering, 2010, 10, .	2.7	9
39	Innovative integration techniques between Virtual Reality systems and CAx tools. International Journal of Advanced Manufacturing Technology, 2008, 38, 1085-1097.	3.0	18
40	Design Automation Tools as a Support for Knowledge Management in Topology Optimization. , 2008, , .		4
41	VIRTUAL TOUR IN THE SUNKEN "VILLA CON INGRESSO A PROTIRO―WITHIN THE UNDERWATER ARCHAEOLOGICAL PARK OF BAIAE. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W10, 45-51.	0.2	10
42	VIRTUAL DIVING IN THE UNDERWATER ARCHAEOLOGICAL SITE OF CALA MINNOLA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W3, 121-126.	0.2	8