List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1327243/publications.pdf Version: 2024-02-01

Dirli

#	Article	IF	CITATIONS
1	Thermoelastic damping in rectangular and circular microplate resonators. Journal of Sound and Vibration, 2012, 331, 721-733.	3.9	104
2	Improving Handling Stability Performance of Four-Wheel Steering Vehicle via \$mu\$-Synthesis Robust Control. IEEE Transactions on Vehicular Technology, 2007, 56, 2432-2439.	6.3	82
3	Gain-Scheduled Vehicle Handling Stability Control Via Integration of Active Front Steering and Suspension Systems. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2016, 138, .	1.6	44
4	Analytical modeling of thermoelastic damping in bilayered microplate resonators. International Journal of Mechanical Sciences, 2016, 106, 128-137.	6.7	42
5	Thermoelastic damping in microrings with circular cross-section. Journal of Sound and Vibration, 2016, 361, 341-354.	3.9	39
6	Thermoelastic damping in rectangular microplate resonators with three-dimensional heat conduction. International Journal of Mechanical Sciences, 2017, 133, 578-589.	6.7	36
7	Thermoelastic damping in thin microrings with two-dimensional heat conduction. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 198-206.	2.7	35
8	Thermoelastic damping in circular cross-section micro/nanobeam resonators with single-phase-lag time. International Journal of Mechanical Sciences, 2018, 142-143, 583-594.	6.7	34
9	Thermoelastic Damping in Micro- and Nanobeam Resonators With Non-Fourier Heat Conduction. IEEE Sensors Journal, 2017, 17, 6966-6977.	4.7	32
10	Single-phase-lag thermoelastic damping models for rectangular cross-sectional micro- and nano-ring resonators. International Journal of Mechanical Sciences, 2019, 163, 105132.	6.7	31
11	Dual-phase-lag thermoelastic damping models for micro/nanobeam resonators. Applied Mathematical Modelling, 2020, 79, 31-51.	4.2	29
12	A new model for squeeze-film damping of electrically actuated microbeams under the effect of a static deflection. Journal of Micromechanics and Microengineering, 2007, 17, 1242-1251.	2.6	28
13	Dual-phase-lagging thermoelastic damping and frequency shift of micro/nano-ring resonators with rectangular cross-section. Thin-Walled Structures, 2021, 159, 107309.	5.3	28
14	Nonlocal dual-phase-lagging thermoelastic damping in rectangular and circular micro/nanoplate resonators. Applied Mathematical Modelling, 2021, 95, 667-687.	4.2	26
15	Thermoelastic Damping in the Axisymmetric Vibration of Circular Microplate Resonators with Two-Dimensional Heat Conduction. Journal of Thermal Stresses, 2013, 36, 830-850.	2.0	25
16	A molecular dynamics simulation approach for the squeeze-film damping of MEMS devices in the free molecular regime. Journal of Micromechanics and Microengineering, 2010, 20, 035005.	2.6	22
17	Analytical modeling of squeeze-film damping for perforated circular microplates. Journal of Sound and Vibration, 2014, 333, 2688-2700.	3.9	21
18	Thermoelastic damping in trilayered microplate resonators. International Journal of Mechanical Sciences, 2019, 151, 595-608.	6.7	21

#	Article	IF	CITATIONS
19	A new approach and model for accurate determination of the dynamic pull-in parameters of microbeams actuated by a step voltage. Journal of Micromechanics and Microengineering, 2013, 23, 045010.	2.6	20
20	Thermoelastic damping in rectangular microplate/nanoplate resonators based on modified nonlocal strain gradient theory and nonlocal heat conductive law. Journal of Thermal Stresses, 2021, 44, 690-714.	2.0	20
21	Thermoelastic damping in the size-dependent micro/nanobeam resonator with nonlocal dual-phase-lag heat conduction. Thin-Walled Structures, 2021, 169, 108437.	5.3	20
22	Robust steering assistance control for tracking large-curvature path considering uncertainties of driver's steering behavior. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235, 2013-2028.	1.9	20
23	On the air damping of flexible microbeam in free space at the free-molecule regime. Microfluidics and Nanofluidics, 2007, 3, 715-721.	2.2	19
24	Thermoelastic Damping in Asymmetric Three-Layered Microbeam Resonators. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	2.2	18
25	Thermoelastic damping in bilayer microbeam resonators with two-dimensional heat conduction. International Journal of Mechanical Sciences, 2020, 167, 105245.	6.7	16
26	Thermoelastic damping in flexural vibration of bilayered microbeams with circular cross-section. Applied Mathematical Modelling, 2020, 77, 1129-1147.	4.2	15
27	An Analytical Model for Squeeze-Film Damping of Perforated Torsional Microplates Resonators. Sensors, 2015, 15, 7388-7411.	3.8	14
28	Thermoelastic damping in torsion microresonators with coupling effect between torsion and bending. Journal of Sound and Vibration, 2014, 333, 1509-1525.	3.9	12
29	Nonlocal dual-phase-lag thermoelastic dissipation of size-dependent micro/nano-ring resonators. International Journal of Mechanical Sciences, 2022, 219, 107080.	6.7	12
30	Thermoelastic Damping in Partially Covered Bilayer Microbeam Resonators with Two-Dimensional Heat Conduction. Journal of Sound and Vibration, 2021, 494, 115863.	3.9	11
31	A generalized methodology for thermoelastic damping in axisymmetric vibration of circular plate resonators covered by multiple partial coatings. Thin-Walled Structures, 2021, 162, 107576.	5.3	10
32	A numerical molecular dynamics approach for squeeze-film damping of perforated MEMS structures in the free molecular regime. Microfluidics and Nanofluidics, 2014, 17, 759-772.	2.2	9
33	Thermoelastic damping in micro-wedged cantilever resonator with rectangular cross-section. , 2016, ,		9
34	Entropy Generation and Thermoelastic Damping in the In-plane Vibration of Microring Resonators. Entropy, 2019, 21, 631.	2.2	9
35	Thermoelastic Damping in Micromechanical Resonators with a Proof Mass and a Network of Suspension Beams. Japanese Journal of Applied Physics, 2011, 50, 077202.	1.5	9
36	A New Free Molecular Model for Squeeze-Film Damping of Flexible Microbeam in Low Vacuum. Micro and Nanosystems, 2009, 1, 68-71.	0.6	8

#	Article	IF	CITATIONS
37	A model for squeeze-film damping of perforated MEMS devices in the free molecular regime. Journal of Micromechanics and Microengineering, 2011, 21, 025006.	2.6	8
38	An Analytical Model for Thermoelastic Damping in Microresonators Based on Entropy Generation. Journal of Vibration and Acoustics, Transactions of the ASME, 2014, 136, .	1.6	8
39	A generalized energy transfer model for squeeze-film air damping in the free molecular regime. Journal of Micromechanics and Microengineering, 2018, 28, 085003.	2.6	7
40	Robust guaranteed cost state-delayed vehicle lateral stability control with applications to in-wheel-motor-driven electric vehicles. , 2015, , .		6
41	Squeeze-film damping of circular microplates vibrating in a tilting motion. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	5
42	Thermoelastic Damping in Micromechanical Resonators with a Proof Mass and a Network of Suspension Beams. Japanese Journal of Applied Physics, 2011, 50, 077202.	1.5	4
43	Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid. Chinese Physics B, 2012, 21, 054301.	1.4	4
44	A Wavelet Interpolation Galerkin Method for the Simulation of MEMS Devices under the Effect of Squeeze Film Damping. Mathematical Problems in Engineering, 2010, 2010, 1-25.	1.1	3
45	Energy Measurement of Bubble Bursting Based on Vibration Signals. Chinese Physics Letters, 2012, 29, 064701.	3.3	3
46	Efficient molecular model for squeeze-film damping in rarefied air*. Chinese Physics B, 2019, 28, 098501.	1.4	3
47	Analytical model of squeeze film air damping of perforated plates in the free molecular regime. Microsystem Technologies, 2019, 25, 1753-1761.	2.0	3
48	Thermoelastic Damping in Cone Microcantilever Resonator. IOP Conference Series: Materials Science and Engineering, 2017, 224, 012014.	0.6	2
49	Analysis of thermoelastic damping in the clamped-free microbeam with linearly tapered circular cross-section. Journal of Physics: Conference Series, 2018, 1053, 012053.	0.4	2
50	Modeling of Driver's Steering Behavior in Large-Curvature Path Following with Back Propagation Neural Network. , 2019, , .		2
51	Driver torque steering assisting control considering the uncertainties of the driver's behavior in following large curvature path. , 2019, , .		2
52	A TRT-LBM model of squeeze film air damping of micro-beam in the transition regime. Archive of Applied Mechanics, 2021, 91, 4589-4598.	2.2	2
53	Thermoelastic damping in bilayered microbar resonators with circular cross-section. IOP Conference Series: Materials Science and Engineering, 2017, 265, 012023.	0.6	1
54	An Improved Model for Air Damping of Perforated Structures. IOP Conference Series: Materials Science and Engineering, 2017, 224, 012007.	0.6	1

#	Article	IF	CITATIONS
55	A Thermoelastic Damping Model for the Cone Microcantilever Resonator with Circular Cross-section. IOP Conference Series: Materials Science and Engineering, 2017, 224, 012043.	0.6	1
56	Analysis of thermoelastic damping in linearly tapered microbeam resonators with rectangular cross-section. , 2018, , .		1
57	A modified thermoelastic damping model for micro- and nanobeam resonators with non-fourier theory of dual-phase-lag model. , 2018, , .		1
58	Multiple-Relaxation-Time Lattice Boltzmann Model for Squeeze Film Air Damping of Large Knudsen Number in MEMS. , 2020, , .		1
59	Two-Dimensional Models of Thermoelastic Damping for Out-of-Plane Vibration of Microrings With Circular Cross-Section. IEEE Access, 2020, 8, 214300-214309.	4.2	1
60	Thermoelastic damping in nanobeam resonators based on effective nonlocal stress model. , 2020, , .		1
61	Numerical Studies of the Squeeze-Film Damping of MEMS Devices with Perforations in the Non-Continuum Regime. Advanced Materials Research, 0, 677, 130-135.	0.3	0
62	Analysis of Thermoelastic Damping in Bilayered Circular Microplate Resonators. Applied Mechanics and Materials, 2014, 716-717, 785-789.	0.2	0
63	A model for thermoelastic dissipation of the fully clamped rectangular microplates. , 2015, , .		0
64	Analytical model of squeeze film air damping for circular microplates in the free molecular regime. , 2018, , .		0
65	Thermoelastic damping analysis of double clamped microbeams with exponentially tapered thickness. , 2018, , .		0
66	Investigation of a compact model for squeeze-film air damping in the free molecular regime. Journal of Physics: Conference Series, 2019, 1324, 012074.	0.4	0
67	Thermoelastic Damping in Full Clamped Rectangular Microplate Resonator Based on the Modified Couple Stress Theory with Three-Dimensional Heat Conduction. , 2019, , .		0
68	Effect of Boundary Conditions on Thermoelastic Damping in Microbeam Resonators with Exponentially Varying Thickness. , 2019, , .		0
69	Thermoelastic Damping in Bilayered Microbeam Resonators with Annular-cross Section. , 2019, , .		0
70	Analytical Model of Squeeze-film Damping for Perforated Circular Plate. , 2019, , .		0
71	Study on Thermoelastic Damping in Micro/nano-Beam Resonators with Linearly-varying Thickness. , 2019, , .		0
72	Analysis of Squeeze Film Air Damping with Lattice Boltzmann Method in Transition Regime. , 2019, , .		0

#	Article	IF	CITATIONS
73	Thermoelastic Damping in the Flexural Vibration of Bilayered Microbeam Resonators with Annular Cross-Section. , 2020, , .		0
74	Thermoelastic Damping in Fully Clamped Circular Plate Resonators Based on Nonlocal Thermoelasticity. Journal of Physics: Conference Series, 2021, 1888, 012013.	0.4	0
75	EFFICIENT APPROACH FOR COUPLED ELECTROSTATIC AND STRUCTURAL ANALYSIS OF MEMS VIA BOUNDARY ELEMENT METHOD AND MODAL EXPANSION. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2006, 42, 153.	0.5	Ο
76	A squeeze-film damping model for the rectangular perforated torsion micro-mirrors. , 2015, , .		0
77	Multiscale Convolutional Neural Network for the Fault Diagnosis of Rolling Bearing. , 2021, , .		Ο
78	Thermoelastic Damping of Monocrystalline Silicon (001) Rectangular Thin Plate. , 2021, , .		0
79	Squeeze-Film Damping of Microbeam and Microplate Resonators in the Free Molecular Regime. Micro and Nanosystems, 2022, 14, 341-349.	0.6	0