
Maria J J Vicent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1327141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Delivery and Translational Research, 2022, 12, 500-525.	5.8	92
2	In Vivo Antitumor and Antimetastatic Efficacy of a Polyacetalâ€Based Paclitaxel Conjugate for Prostate Cancer Therapy. Advanced Healthcare Materials, 2022, 11, e2101544.	7.6	13
3	Polymer-based non-viral vectors for gene therapy in the skin. Polymer Chemistry, 2022, 13, 718-735.	3.9	6
4	Renal Nano-drug delivery for acute kidney Injury: Current status and future perspectives. Journal of Controlled Release, 2022, 343, 237-254.	9.9	32
5	Editorial: Clinically-relevant and predictive cancer models for nanomedicine evaluation. Advanced Drug Delivery Reviews, 2022, 183, 114140.	13.7	0
6	Depletion of Mannose Receptor–Positive Tumor-associated Macrophages via a Peptide-targeted Star-shaped Polyglutamate Inhibits Breast Cancer Progression in Mice. Cancer Research Communications, 2022, 2, 533-551.	1.7	7
7	Nanomedicine for the Treatment of Advanced Prostate Cancer. Advanced Therapeutics, 2021, 4, 2000136.	3.2	3
8	Lipid-Polyglutamate Nanoparticle Vaccine Platform. ACS Applied Materials & Interfaces, 2021, 13, 6011-6022.	8.0	20
9	Targeting Alzheimer's disease with multimodal polypeptide-based nanoconjugates. Science Advances, 2021, 7, .	10.3	29
10	Polymer Conjugation of Docosahexaenoic Acid Potentiates Cardioprotective Therapy in Preclinical Models of Myocardial Ischemia/Reperfusion Injury. Advanced Healthcare Materials, 2021, 10, 2002121.	7.6	3
11	Polyglutamic acid-based crosslinked doxorubicin nanogels as an anti-metastatic treatment for triple negative breast cancer. Journal of Controlled Release, 2021, 332, 10-20.	9.9	35
12	Human-Induced Neural and Mesenchymal Stem Cell Therapy Combined with a Curcumin Nanoconjugate as a Spinal Cord Injury Treatment. International Journal of Molecular Sciences, 2021, 22, 5966.	4.1	22
13	The past, present, and future of breast cancer models for nanomedicine development. Advanced Drug Delivery Reviews, 2021, 173, 306-330.	13.7	65
14	Academic collaborative models fostering the translation of physiological in vitro systems from basic research into drug discovery. Drug Discovery Today, 2021, 26, 1369-1381.	6.4	6
15	A targeted polypeptide-based nanoconjugate as a nanotherapeutic for alcohol-induced neuroinflammation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102376.	3.3	3
16	A rationally designed self-immolative linker enhances the synergism between a polymer-rock inhibitor conjugate and neural progenitor cells in the treatment of spinal cord injury. Biomaterials, 2021, 276, 121052.	11.4	12
17	Multi-Omic Approaches to Breast Cancer Metabolic Phenotyping: Applications in Diagnosis, Prognosis, and the Development of Novel Treatments. Cancers, 2021, 13, 4544.	3.7	11
18	Polypeptides as building blocks for image-guided nanotherapies. Current Opinion in Biomedical Engineering, 2021, 20, 100323.	3.4	1

#	Article	IF	CITATIONS
19	Higher-order interfiber interactions in the self-assembly of benzene-1,3,5-tricarboxamide-based peptides in water. Polymer Chemistry, 2021, 12, 3478-3487.	3.9	8
20	Two-Component Peptidic Molecular Gels for Topical Drug Delivery of Naproxen. ACS Applied Bio Materials, 2021, 4, 935-944.	4.6	14
21	Synthetic polypeptides for drug and gene delivery, and tissue engineering. Advanced Drug Delivery Reviews, 2021, 178, 113995.	13.7	10
22	A Hyaluronic Acid Demilune Scaffold and Polypyrrole-Coated Fibers Carrying Embedded Human Neural Precursor Cells and Curcumin for Surface Capping of Spinal Cord Injuries. Biomedicines, 2021, 9, 1928.	3.2	17
23	Polyornithine-based polyplexes to boost effective gene silencing in CNS disorders. Nanoscale, 2020, 12, 6285-6299.	5.6	10
24	PEGylated proteins. , 2020, , 23-40.		1
25	Polypeptide-corticosteroid conjugates as a topical treatment approach to psoriasis. Journal of Controlled Release, 2020, 318, 210-222.	9.9	31
26	Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Advanced Drug Delivery Reviews, 2020, 160, 136-169.	13.7	42
27	Advanced drug delivery 2020 - Parts 1, 2 and 3. Advanced Drug Delivery Reviews, 2020, 156, 1-2.	13.7	3
28	Targeting Pro-Tumoral Macrophages in Early Primary and Metastatic Breast Tumors with the CD206-Binding mUNO Peptide. Molecular Pharmaceutics, 2020, 17, 2518-2531.	4.6	26
29	Effective Nephroprotection Against Acute Kidney Injury with a Star-Shaped Polyglutamate-Curcuminoid Conjugate. Scientific Reports, 2020, 10, 2056.	3.3	24
30	The generation of stabilized supramolecular nanorods from star-shaped polyglutamates. Polymer Chemistry, 2020, 11, 1220-1229.	3.9	8
31	Envisioning the future of polymer therapeutics for brain disorders. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1532.	6.1	17
32	Functionalized branched polymers: promising immunomodulatory tools for the treatment of cancer and immune disorders. Materials Horizons, 2019, 6, 1956-1973.	12.2	44
33	Characterization of tripleâ€negative breast cancer preclinical models provides functional evidence of metastatic progression. International Journal of Cancer, 2019, 145, 2267-2281.	5.1	60
34	Molecular platforms for targeted drug delivery. International Review of Cell and Molecular Biology, 2019, 346, 1-50.	3.2	22
35	EU-OPENSCREEN: A Novel Collaborative Approach to Facilitate Chemical Biology. SLAS Discovery, 2019, 24, 398-413.	2.7	12
36	Anticancer Activity Driven by Drug Linker Modification in a Polyglutamic Acidâ€Based Combinationâ€Drug Conjugate. Advanced Functional Materials, 2018, 28, 1800931.	14.9	36

#	Article	IF	CITATIONS
37	Metabolomics facilitates the discrimination of the specific anti-cancer effects of free- and polymer-conjugated doxorubicin in breast cancer models. Biomaterials, 2018, 162, 144-153.	11.4	39
38	pHâ€Responsive Polyacetal–Protein Conjugates Designed for Polymer Masked–Unmasked Protein Therapy (PUMPT). Macromolecular Bioscience, 2018, 18, 1700302.	4.1	7
39	Tumor microenvironment-targeted poly-L-glutamic acid-based combination conjugate for enhanced triple negative breast cancer treatment. Biomaterials, 2018, 186, 8-21.	11.4	52
40	Near-Infrared Activatable Phthalocyanine–Poly-L-Glutamic Acid Conjugate: Enhanced in Vivo Safety and Antitumor Efficacy toward an Effective Photodynamic Cancer Therapy. Molecular Pharmaceutics, 2018, 15, 2594-2605.	4.6	11
41	Polyacetalâ€Based Combination Therapy for the Treatment of Prostate Cancer. Macromolecular Rapid Communications, 2018, 39, e1800265.	3.9	9
42	In Vivo Imaging of MMPâ€13 Activity Using a Specific Polymerâ€FRET Peptide Conjugate Detects Early Osteoarthritis and Inhibitor Efficacy. Advanced Functional Materials, 2018, 28, 1802738.	14.9	26
43	Polymer Therapeutics: Biomarkers and New Approaches for Personalized Cancer Treatment. Journal of Personalized Medicine, 2018, 8, 6.	2.5	21
44	Hemodynamic effects of HPMA copolymer based doxorubicin conjugate: A randomized controlled and comparative spectral study in conscious rats. Nanotoxicology, 2017, 11, 210-222.	3.0	18
45	Near-infrared activatable phthalocyanine-poly-L-glutamic acid conjugate: increased cellular uptake and light–dark toxicity ratio toward an effective photodynamic cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1447-1458.	3.3	25
46	Preclinical safety assessments of nanoâ€sized constructs on cardiovascular system toxicity: A case for telemetry. Journal of Applied Toxicology, 2017, 37, 1268-1285.	2.8	7
47	Modulating angiogenesis with integrin-targeted nanomedicines. Advanced Drug Delivery Reviews, 2017, 119, 101-119.	13.7	70
48	Design of Polyâ€ <scp>l</scp> â€Glutamateâ€Based Complexes for pDNA Delivery. Macromolecular Bioscience, 2017, 17, 1700029.	4.1	7
49	Use of polymer conjugates for the intraperoxisomal delivery of engineered human alanine:glyoxylate aminotransferase as a protein therapy for primary hyperoxaluria type I. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 897-907.	3.3	20
50	Capturing "Extraordinary―Softâ€Assembled Chargeâ€Like Polypeptides as a Strategy for Nanocarrier Design. Advanced Materials, 2017, 29, 1702888.	21.0	38
51	Professor Ruth Duncan: a pioneer in the field of polymer therapeutics. Journal of Drug Targeting, 2017, 25, 757-758.	4.4	0
52	Integrin-targeted nano-sized polymeric systems for paclitaxel conjugation: a comparative study. Journal of Drug Targeting, 2017, 25, 829-844.	4.4	15
53	HIF- $1\hat{l}\pm$ inhibition by diethylstilbestrol and its polyacetal conjugate in hypoxic prostate tumour cells: insights from NMR metabolomics. Journal of Drug Targeting, 2017, 25, 845-855.	4.4	5
54	Macromol. Biosci. 1/2017. Macromolecular Bioscience, 2017, 17, .	4.1	1

#	Article	IF	CITATIONS
55	Polypeptideâ€Based Conjugates as Therapeutics: Opportunities and Challenges. Macromolecular Bioscience, 2017, 17, 1600316.	4.1	55
56	Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery. Biomaterials, 2017, 113, 18-30.	11.4	73
57	MP070A POLYMER CONJUGATE NANOMEDICINE INHIBITS LPS-INDUCED MAPK ACTIVATION AND REDUCES ENDOTOXEMIA-MEDIATED KIDNEY INFLAMMATION. Nephrology Dialysis Transplantation, 2017, 32, iii451-iii451.	0.7	0
58	Relevant Physicochemical Descriptors of "Soft Nanomedicines―to Bypass Biological Barriers. Current Pharmaceutical Design, 2016, 22, 1274-1291.	1.9	16
59	MiR-187 Targets the Androgen-Regulated Gene ALDH1A3 in Prostate Cancer. PLoS ONE, 2015, 10, e0125576.	2.5	52
60	Triblock Copolymer Nanovesicles for pH-Responsive Targeted Delivery and Controlled Release of siRNA to Cancer Cells. Biomacromolecules, 2015, 16, 1924-1937.	5.4	53
61	Biocompatibility Reduces Inflammation-Induced Apoptosis in Mesothelial Cells Exposed to Peritoneal Dialysis Fluid. Blood Purification, 2015, 39, 200-209.	1.8	16
62	Smart branched polymer drug conjugates as nano-sized drug delivery systems. Biomaterials Science, 2015, 3, 1321-1334.	5.4	83
63	Well-Defined Star-Shaped Polyglutamates with Improved Pharmacokinetic Profiles As Excellent Candidates for Biomedical Applications. Molecular Pharmaceutics, 2015, 12, 3639-3649.	4.6	45
64	Polymer-doxycycline conjugates as fibril disrupters: An approach towards the treatment of a rare amyloidotic disease. Journal of Controlled Release, 2015, 198, 80-90.	9.9	27
65	Peptide-Based Polymer Therapeutics. Polymers, 2014, 6, 515-551.	4.5	84
66	Synthesis and characterization of variable conformation pH responsive block co-polymers for nucleic acid delivery and targeted cell entry. Polymer Chemistry, 2014, 5, 1626-1636.	3.9	37
67	Reduction Sensitive Poly(<scp>l</scp> -glutamic acid) (PGA)-Protein Conjugates Designed for Polymer Masked–Unmasked Protein Therapy. Biomacromolecules, 2014, 15, 4168-4177.	5.4	40
68	Smart polymer nanocarriers for drug delivery. , 2014, , 327-358.		8
69	Targeting a rare amyloidotic disease through rationally designed polymer conjugates. Journal of Controlled Release, 2014, 178, 95-100.	9.9	9
70	Identification of miR-187 and miR-182 as Biomarkers of Early Diagnosis and Prognosis in Patients with Prostate Cancer Treated with Radical Prostatectomy. Journal of Urology, 2014, 192, 252-259.	0.4	109
71	Abstract LB-196: Preventing breast cancer metastases with an anti-angiogenic and anticancer RGD-bearing nanomedicine. , 2014, , .		0
72	Polymer therapeutics-prospects for 21st century: The end of the beginning. Advanced Drug Delivery Reviews, 2013, 65, 60-70.	13.7	368

#	Article	IF	CITATIONS
73	A versatile post-polymerization modification method for polyglutamic acid: synthesis of orthogonal reactive polyglutamates and their use in "click chemistry― Polymer Chemistry, 2013, 4, 2989.	3.9	38
74	A controlled and versatile NCA polymerization method for the synthesis of polypeptides. Polymer Chemistry, 2013, 4, 3182.	3.9	104
75	A Polymeric Nanomedicine Diminishes Inflammatory Events in Renal Tubular Cells. PLoS ONE, 2013, 8, e51992.	2.5	35
76	P(HPMA)-block-P(LA) copolymers in paclitaxel formulations: Polylactide stereochemistry controls micellization, cellular uptake kinetics, intracellular localization and drug efficiency. Journal of Controlled Release, 2012, 163, 63-74.	9.9	34
77	Polyacetal-stilbene conjugates — The first examples of polymer therapeutics for the inhibition of HIF-1 in the treatment of solid tumours. Journal of Controlled Release, 2012, 164, 314-322.	9.9	26
78	Drug Delivery Strategies: Polymer Therapeutics. RSC Drug Discovery Series, 2012, , 456-482.	0.3	0
79	Demonstrating the importance of polymer-conjugate conformation in solution on its therapeutic output: Diethylstilbestrol (DES)-polyacetals as prostate cancer treatment. Journal of Controlled Release, 2012, 159, 290-301.	9.9	33
80	Abstract 5225: Correlation between αvβ3 integrin expression, paclitaxel resistance and RGD-bearing conjugate efficacy. Cancer Research, 2012, 72, 5225-5225.	0.9	1
81	Polymer Coiled-Coil Conjugates: Potential for Development as a New Class of Therapeutic "Molecular Switch― Biomacromolecules, 2011, 12, 19-27.	5.4	39
82	Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure–property relationships to better defined therapeutics. Polymer Chemistry, 2011, 2, 1900.	3.9	356
83	Polymer–drug conjugates as nano-sized medicines. Current Opinion in Biotechnology, 2011, 22, 894-900.	6.6	135
84	Molecules that modulate Apafâ \in 1 activity. Medicinal Research Reviews, 2011, 31, 649-675.	10.5	21
85	Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel. Biomaterials, 2011, 32, 3862-3874.	11.4	121
86	Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunitiesâ~†. Advanced Drug Delivery Reviews, 2010, 62, 272-282.	13.7	211
87	Nanoconjugates as intracorporeal neutralizers of bacterial endotoxins. Journal of Controlled Release, 2010, 142, 277-285.	9.9	15
88	Relevance of folic acid/polymer ratio in targeted PEG–epirubicin conjugates. Journal of Controlled Release, 2010, 146, 388-399.	9.9	70
89	Synthesis, Characterization and Preliminary Biological Evaluation of P(HPMA)â€ <i>b</i> â€P(LLA) Copolymers: A New Type of Functional Biocompatible Block Copolymer. Macromolecular Rapid Communications, 2010, 31, 1492-1500.	3.9	34
90	Polymer–drug conjugates for novel molecular targets. Nanomedicine, 2010, 5, 915-935.	3.3	81

#	Article	lF	CITATIONS
91	Synthesis and In Vitro Evaluation of Defined HPMA Folate Conjugates: Influence of Aggregation on Folate Receptor (FR) Mediated Cellular Uptake. Biomacromolecules, 2010, 11, 2274-2282.	5.4	64
92	Molecules That Bind a Central Protein Component of the Apoptosome, Apaf-1, and Modulate Its Activity. , 2010, , 75-94.		1
93	A Nanoconjugate Apaf-1 Inhibitor Protects Mesothelial Cells from Cytokine-Induced Injury. PLoS ONE, 2009, 4, e6634.	2.5	34
94	Combination therapy: Opportunities and challenges for polymer–drug conjugates as anticancer nanomedicines. Advanced Drug Delivery Reviews, 2009, 61, 1203-1213.	13.7	596
95	Polymer therapeutics: Clinical applications and challenges for development. Advanced Drug Delivery Reviews, 2009, 61, 1117-1120.	13.7	176
96	Polymer conjugates as therapeutics: future trends, challenges and opportunities. Expert Opinion on Drug Delivery, 2008, 5, 593-614.	5.0	86
97	Modulation of Cellular Apoptosis with Apoptotic Protease-Activating Factor 1 (Apaf-1) Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 521-529.	6.4	65
98	Polymer Maskedâ^'Unmasked Protein Therapy. 1. Bioresponsive Dextrinâ^'Trypsin and â^'Melanocyte Stimulating Hormone Conjugates Designed for α-Amylase Activation. Biomacromolecules, 2008, 9, 1146-1154.	5.4	90
99	Procedural Graphics Model and Behavior Generation. Lecture Notes in Computer Science, 2008, , 106-115.	1.3	3
100	Polymer-drug conjugates: current status and future trends. Frontiers in Bioscience - Landmark, 2008, 13, 2744.	3.0	99
101	Discovery of Inhibitors of Protein-Protein Interactions from Combinatorial Libraries. Current Topics in Medicinal Chemistry, 2007, 7, 83-95.	2.1	15
102	Conjugation of a novel Apaf-1 inhibitor to peptide-based cell-membrane transporters:. Peptides, 2007, 28, 958-968.	2.4	31
103	Polymer-drug conjugates as modulators of cellular apoptosis. AAPS Journal, 2007, 9, E200-E207.	4.4	38
104	Using Small-Angle Neutron Scattering to Study the Solution Conformation ofN-(2-Hydroxypropyl)methacrylamide Copolymerâ^'Doxorubicin Conjugates. Biomacromolecules, 2007, 8, 1573-1579.	5.4	50
105	Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer–Dox–AGM in breast cancer cells. Journal of Controlled Release, 2007, 117, 28-39.	9.9	85
106	Solid-phase Chemistry: A Useful Tool to Discover Modulators of Protein Interactions. International Journal of Peptide Research and Therapeutics, 2007, 13, 281-293.	1.9	14
107	Functional monolithic resins for the development of enantioselective versatile catalytic minireactors with long-term stability: TADDOL supported systems. Green Chemistry, 2006, 8, 717-726.	9.0	54
108	Poly-l-glutamic acid (PGA) Aided Inhibitors of Apoptotic Protease Activating Factor 1 (Apaf-1):Â An Antiapoptotic Polymeric Nanomedicine. Journal of Medicinal Chemistry, 2006, 49, 3763-3765.	6.4	51

#	Article	IF	CITATIONS
109	Small molecule inhibitors of Apaf-1-related caspase- 3/-9 activation that control mitochondrial-dependent apoptosis. Cell Death and Differentiation, 2006, 13, 1523-1532.	11.2	72
110	Polymer conjugates: nanosized medicines for treating cancer. Trends in Biotechnology, 2006, 24, 39-47.	9.3	424
111	Polymer Therapeutics Designed for a Combination Therapy of Hormone-Dependent Cancer. Angewandte Chemie - International Edition, 2005, 44, 4061-4066.	13.8	181
112	Polymer–drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocrine-Related Cancer, 2005, 12, S189-S199.	3.1	156
113	HPMA copolymer–aminoglutethimide conjugates inhibit aromatase in MCF-7 cell lines. Journal of Drug Targeting, 2005, 13, 459-470.	4.4	33
114	HPMA Copolymer-1,5-Diazaanthraquinone Conjugates as Novel Anticancer Therapeutics. Journal of Drug Targeting, 2004, 12, 503-515.	4.4	25
115	Synthesis and Structure—Activity Relationships of 1,5-Diazaanthraquinones as Antitumor Compounds ChemInform, 2004, 35, no.	0.0	0
116	Synthesis and biological evaluation of new 1,5-diazaanthraquinones with cytotoxic activity. Bioorganic and Medicinal Chemistry, 2004, 12, 6505-6515.	3.0	10
117	Total Synthesis and Preliminary Biological Evaluation ofcis-Solamin Isomers. Journal of Organic Chemistry, 2004, 69, 3368-3374.	3.2	62
118	Polyacetal-diethylstilboestrol: A Polymeric Drug Designed for pH-triggered Activation. Journal of Drug Targeting, 2004, 12, 491-501.	4.4	54
119	Synthesis and structure–activity relationships of 1,5-diazaanthraquinones as antitumour compounds. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3929-3932.	2.2	12
120	Nickel complexes from α-amino amides as efficient catalysts for the enantioselective Et2Zn addition to benzaldehyde. Tetrahedron Letters, 2003, 44, 6891-6894.	1.4	53
121	Development of small focused libraries of supported amino alcohols as an efficient strategy for the optimization of enantioselective heterogeneous catalysts for the ZnEt2 addition to benzaldehyde. Tetrahedron, 2003, 59, 1797-1804.	1.9	15
122	Preparation and Optimization of Polymer-Supported and Amino Alcohol Based Enantioselective Reagents and Catalysts. Industrial & Engineering Chemistry Research, 2003, 42, 5977-5982.	3.7	12
123	New Supported Î ² -Amino Alcohols as Efficient Catalysts for the Enantioselective Addition of Diethylzinc to Benzaldehyde under Flow Conditions. Organic Letters, 2002, 4, 3947-3950.	4.6	64
124	New CSPs based on peptidomimetics: efficient chiral selectors in enantioselective separations. Polymer Bulletin, 2002, 48, 9-15.	3.3	9
125	FT-Raman as a simple tool for the fast monitoring of reactions on silica-supported reagents and catalysts: application to silica-bound prolinol and TADDOLs. Tetrahedron Letters, 2001, 42, 8459-8462.	1.4	15
126	A general route for the preparation of polymer-supported N-tosyl aminoalcohols and their use as chiral auxiliaries. Tetrahedron Letters, 2001, 42, 1673-1675.	1.4	18

#	Article	IF	CITATIONS
127	A test for the coexistence of reactive intermediates with different molecular composition in chiral Lewis acid-catalysed reactions: the case of Ti-TADDOLate-catalysed Diels–Alder reactions. Tetrahedron: Asymmetry, 2001, 12, 1829-1835.	1.8	6
128	Supported chiral catalysts: the role of the polymeric network. Reactive and Functional Polymers, 2001, 48, 25-35.	4.1	56
129	The use of NIR-FT-Raman spectroscopy for the characterization of polymer-supported reagents and catalysts. Tetrahedron, 2001, 57, 8675-8683.	1.9	53
130	How Important is the Inert Matrix of Supported Enantiomeric Catalysts? Reversal of Topicity with Two Polystyrene Backbones. Angewandte Chemie - International Edition, 2000, 39, 1503-1506.	13.8	98
131	On the origin of changes in topicity observed in Diels–Alder reactions catalyzed by Ti–TADDOLates. Tetrahedron: Asymmetry, 2000, 11, 4885-4893.	1.8	14
132	Polymerisation vs. grafting in the preparation of polymer-supported aluminium catalysts for the Diels-Alder reaction: The role of the polymeric backbone. Tetrahedron, 1999, 55, 12897-12906.	1.9	34
133	TADDOL-TiCl2 catalyzed Diels-Alder reactions: unexpected influence of the substituents in the	1.8	21