
Pavel S Pidenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1327030/publications.pdf Version: 2024-02-01

DAVEL S DIDENKO

#	Article	IF	CITATIONS
1	Luminescent alloyed quantum dots for turn-off enzyme-based assay. Analytical and Bioanalytical Chemistry, 2022, 414, 4471-4480.	3.7	4
2	Imprinted proteins for determination of ovalbumin. Analytical and Bioanalytical Chemistry, 2022, , .	3.7	2
3	Molecularly imprinted polyaniline: Synthesis, properties, application. A review. Izvestiya of Saratov University New Series Series: Chemistry Biology Ecology, 2022, 22, 142-149.	0.1	0
4	Microstructured optical fibers sensor modified by deep eutectic solvent: Liquid-phase microextraction and detection in one analytical device. Talanta, 2021, 232, 122305.	5.5	9
5	Soft glass multi-channel capillaries as a platform for bioimprinting. Talanta, 2020, 208, 120445.	5.5	7
6	Molecularly imprinted polyaniline for detection of horseradish peroxidase. Analytical and Bioanalytical Chemistry, 2020, 412, 6509-6517.	3.7	18
7	Enzyme modulation of quantum dot luminescence: Application in bioanalysis. TrAC - Trends in Analytical Chemistry, 2020, 127, 115897.	11.4	8
8	Detection of antigen-antibody interactions in microstructured optical fibers. , 2020, , .		1
9	Dihydrolipoic acid coated alloyed quantum dots. , 2020, , .		4
10	Simultaneous determination of proteins in microstructured optical fibers supported by chemometric tools. Analytical and Bioanalytical Chemistry, 2019, 411, 7055-7059.	3.7	2
11	Water-dispersed luminescent quantum dots for miRNA detection. TrAC - Trends in Analytical Chemistry, 2019, 111, 197-205.	11.4	28
12	Influence of saline background on microstructured optical fibers optical properties. , 2019, , .		0
13	The pH of protein solutions effect on microstructured optical fibers transmission spectrum. , 2019, , .		Ο
14	Imprinted proteins as a receptor for detection of zearalenone. Analytica Chimica Acta, 2018, 1040, 99-104.	5.4	12
15	Application of microstructural optical waveguides with hollow core for enzyme immunoassay. , 2018, , .		0
16	Đœodification of the internal surface of photonic crystal fibers with Ag and Au nanoparticles for application as sensor elements. , 2017, , .		1
17	The optical properties of quantum dots integrated in a hollow core photon crystal fiber. Proceedings of SPIE, 2017, , .	0.8	0
18	The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers. Optical Materials, 2017, 73, 423-427.	3.6	10

#	Article	IF	CITATIONS
19	Modification of inner surface of photonic crystal fibers with self-assembled polyaniline films. Proceedings of SPIE, 2016, , .	0.8	Ο
20	Controlled chemical modification of the internal surface of photonic crystal fibers for application as biosensitive elements. Optical Materials, 2016, 60, 283-289.	3.6	9