

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1327009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible sodium-ion capacitors boosted by high electrochemically-reactive and structurally-stable Sb2S3 nanowire/Ti3C2Tx MXene film anodes. Nano Research, 2023, 16, 5592-5600.	10.4	20
2	2D Materialâ€Based Heterostructures for Rechargeable Batteries. Advanced Energy Materials, 2022, 12, 2100864.	19.5	91
3	Dense SnS ₂ nanoplates vertically anchored on a graphene aerogel for pseudocapacitive sodium storage. Materials Chemistry Frontiers, 2022, 6, 325-332.	5.9	22
4	A long-life lithium-oxygen battery via a molecular quenching/mediating mechanism. Science Advances, 2022, 8, eabm1899.	10.3	26
5	MXene-Based Aerogel Anchored with Antimony Single Atoms and Quantum Dots for High-Performance Potassium-Ion Batteries. Nano Letters, 2022, 22, 1225-1232.	9.1	64
6	Recent advances in "water in salt―electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+,) Tj ETQc	0 0 0 rgB [−] 12.9	/Qyerlock 1

7	Mid-Infrared Fiber Laser. Nanomaterials, 2022, 12, 1343.	4.1	11
8	Catalytic Mechanism of Oxygen Vacancies in Perovskite Oxides for Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2202222.	21.0	78
9	Synergy of MXene with Se Infiltrated Porous Nâ€Doped Carbon Nanofibers as Janus Electrodes for Highâ€Performance Sodium/Lithium–Selenium Batteries. Advanced Energy Materials, 2022, 12, .	19.5	38
10	The Rise of Prussian Blue Analogs: Challenges and Opportunities for Highâ€Performance Cathode Materials in Potassiumâ€lon Batteries. Small Structures, 2021, 2, 2000054.	12.0	91
11	Nanoengineering of 2D MXeneâ€Based Materials for Energy Storage Applications. Small, 2021, 17, e1902085.	10.0	398
12	Ultraefficiently Calming Cytokine Storm Using Ti ₃ C ₂ T <i>_x</i> MXene. Small Methods, 2021, 5, 2001108.	8.6	29
13	A universal strategy towards high–energy aqueous multivalent–ion batteries. Nature Communications, 2021, 12, 2857.	12.8	126
13 14	A universal strategy towards high–energy aqueous multivalent–ion batteries. Nature Communications, 2021, 12, 2857. Nanoconfined SnO2/SnSe2 heterostructures in N-doped carbon nanotubes for high-performance sodium-ion batteries. Chemical Engineering Journal, 2021, 418, 129501.	12.8 12.7	126 48
13 14 15	A universal strategy towards high–energy aqueous multivalent–ion batteries. Nature Communications, 2021, 12, 2857. Nanoconfined SnO2/SnSe2 heterostructures in N-doped carbon nanotubes for high-performance sodium-ion batteries. Chemical Engineering Journal, 2021, 418, 129501. Achieving Highâ€Performance 3D K ⁺ â€Preâ€intercalated Ti ₃ C ₂ T _{i>x Ti₃C₂T_{<i>x</i> Regulating Electrolyte Solvation Structure. Angewandte Chemie - International Edition, 2021, 60, 26246-26253.}}	12.8 12.7 13.8	126 48 50
13 14 15 16	A universal strategy towards highâ€"energy aqueous multivalentâ€"ion batteries. Nature Communications, 2021, 12, 2857.Nanoconfined SnO2/SnSe2 heterostructures in N-doped carbon nanotubes for high-performance sodium-ion batteries. Chemical Engineering Journal, 2021, 418, 129501.Achieving Highâ€Performance 3D K ⁺ â€Preâ€intercalated Ti ₃ C ₂ T _{i>xx/i>} MXene for Potassiumâ€ion Hybrid Capacitors via Regulating Electrolyte Solvation Structure. Angewandte Chemie - International Edition, 2021, 60, 26246-26253.Constructing Atomic Heterometallic Sites in Ultrathin Nickel-Incorporated Cobalt Phosphide Nanosheets via a Boron-Assisted Strategy for Highly Efficient Water Splitting. Nano Letters, 2021, 21, 823-832.	12.8 12.7 13.8 9.1	126 48 50 91
13 14 15 16 17	A universal strategy towards high–energy aqueous multivalent–ion batteries. Nature Communications, 2021, 12, 2857. Nanoconfined SnO2/SnSe2 heterostructures in N-doped carbon nanotubes for high-performance sodium-ion batteries. Chemical Engineering Journal, 2021, 418, 129501. Achieving Highâ€Performance 3D K ⁺ â€Preâ€intercalated Ti ₃ C ₂ T _{ti>x>/i>} MXene for Potassiumâ€ion Hybrid Capacitors via Regulating Electrolyte Solvation Structure. Angewandte Chemie - International Edition, 2021, 60, 26246-26253. Constructing Atomic Heterometallic Sites in Ultrathin Nickel-Incorporated Cobalt Phosphide Nanosheets via a Boron-Assisted Strategy for Highly Efficient Water Splitting. Nano Letters, 2021, 21, 823-832. A Dualâ€Protective Artificial Interface for Stable Lithium Metal Anodes. Advanced Energy Materials, 2021, 11, 2102242.	12.8 12.7 13.8 9.1 19.5	126 48 50 91 35

Xin Guo

#	Article	IF	CITATIONS
19	Naâ€ion Batteries—Approaching Old and New Challenges. Advanced Energy Materials, 2020, 10, 2002055.	19.5	229
20	A Stable Conversion and Alloying Anode for Potassiumâ€ion Batteries: A Combined Strategy of Encapsulation and Confinement. Advanced Functional Materials, 2020, 30, 2001588.	14.9	104
21	Antimonyâ€based nanomaterials for highâ€performance potassiumâ€ion batteries. EcoMat, 2020, 2, e12027.	11.9	35
22	Polyolefinâ€Based Janus Separator for Rechargeable Sodium Batteries. Angewandte Chemie, 2020, 132, 16868-16877.	2.0	5
23	Polyolefinâ€Based Janus Separator for Rechargeable Sodium Batteries. Angewandte Chemie - International Edition, 2020, 59, 16725-16734.	13.8	102
24	A Robust Transition-Metal Sulfide Anode Material Enabled by Truss Structures. CheM, 2020, 6, 334-336.	11.7	10
25	Boosting Sodium Storage in Two-Dimensional Phosphorene/Ti ₃ C ₂ T _{<i>x</i>} MXene Nanoarchitectures with Stable Fluorinated Interphase. ACS Nano, 2020, 14, 3651-3659.	14.6	155
26	Interface Engineering of MXene Composite Separator for Highâ€Performance Li–Se and Na–Se Batteries. Advanced Energy Materials, 2020, 10, 2000446.	19.5	94
27	Boosting Performance of Na–S Batteries Using Sulfur-Doped Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets with a Strong Affinity to Sodium Polysulfides. ACS Nano, 2019, 13, 11500-11509.	14.6	220
28	Two-dimensional Sb@TiO2â^'x nanoplates as a high-performance anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 2553-2559.	10.3	42
29	High-Performance Quasi-Solid-State MXene-Based Li–I Batteries. ACS Central Science, 2019, 5, 365-373.	11.3	78
30	WO ₃ nanolayer coated 3D-graphene/sulfur composites for high performance lithium/sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 4596-4603.	10.3	47
31	A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nature Communications, 2019, 10, 602.	12.8	138
32	Ultrathin Porous NiCo ₂ O ₄ Nanosheets for Lithium–Oxygen Batteries: An Excellent Performance Deriving from an Enhanced Solution Mechanism. ACS Applied Energy Materials, 2019, 2, 4215-4223.	5.1	18
33	Yolk–shell N-doped carbon coated FeS ₂ nanocages as a high-performance anode for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14051-14059.	10.3	84
34	Porous Mo2C nanorods as an efficient catalyst for the hydrogen evolution reaction. Journal of Physics and Chemistry of Solids, 2019, 132, 230-235.	4.0	32
35	Structuring Al3+-doped LiNi1â^•3Co1â^•3Mn1â^•3O ₂ by 3D-birdnest-shaped MnO ₂ . Functional Materials Letters, 2019, 12, 1950051.	1.2	4
36	A nitrogen, sulphur dual-doped hierarchical porous carbon with interconnected conductive polyaniline coating for high-performance sodium-selenium batteries. Energy Storage Materials, 2019, 19, 251-260.	18.0	60

Xin Guo

#	Article	IF	CITATIONS
37	Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 6507-6513.	10.3	226
38	Porous Cryo-Dried MXene for Efficient Capacitive Deionization. Joule, 2018, 2, 778-787.	24.0	326
39	Highly Reversible Lithium Polysulfide Semiliquid Battery with Nitrogenâ€Rich Carbon Fiber Electrodes. Energy Technology, 2018, 6, 251-256.	3.8	11
40	Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis, 2018, 1, 985-992.	34.4	1,236
41	2D Metal Carbides and Nitrides (MXenes) as Highâ€Performance Electrode Materials for Lithiumâ€Based Batteries. Advanced Energy Materials, 2018, 8, 1801897.	19.5	341
42	Cobalt-doped MnO2 ultrathin nanosheets with abundant oxygen vacancies supported on functionalized carbon nanofibers for efficient oxygen evolution. Nano Energy, 2018, 54, 129-137.	16.0	182
43	Mxeneâ€Directed Dual Amphiphilicity at Liquid, Solid, and Gas Interfaces. Chemistry - an Asian Journal, 2018, 13, 3850-3854.	3.3	4
44	MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Materials, 2018, 14, 306-313.	18.0	119
45	Entrapping polysulfides by using ultrathin hollow carbon sphere-functionalized separators in high-rate lithium-sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 16610-16616.	10.3	76
46	A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe ₂ O ₃ nanosphere anode and a 3D nitrogen sulphur dual-doped porous carbon cathode. Materials Chemistry Frontiers, 2018, 2, 1811-1821.	5.9	65
47	Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance. Science Bulletin, 2017, 62, 442-452.	9.0	54
48	Porous Carbon Composites for Next Generation Rechargeable Lithium Batteries. Advanced Energy Materials, 2017, 7, 1700283.	19.5	263
49	Sb ₂ O ₃ /MXene(Ti ₃ C ₂ T _x) hybrid anode materials with enhanced performance for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12445-12452.	10.3	245
50	A multi-functional gel co-polymer bridging liquid electrolyte and solid cathode nanoparticles: An efficient route to Li–O 2 batteries with improved performance. Energy Storage Materials, 2017, 7, 1-7.	18.0	30
51	Fe ₃ C@nitrogen doped CNT arrays aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 19672-19679.	10.3	109
52	Confined Sulfur in 3 D MXene/Reduced Graphene Oxide Hybrid Nanosheets for Lithium–Sulfur Battery. Chemistry - A European Journal, 2017, 23, 12613-12619.	3.3	167
53	Ruthenium decorated hierarchically ordered macro–mesoporous carbon for lithium oxygen batteries. Journal of Materials Chemistry A, 2016, 4, 9774-9780.	10.3	42
54	Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 29427-29433.	8.0	234

Xin Guo

#	Article	IF	CITATIONS
55	3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2016, 26, 8746-8756.	14.9	210
56	Organic sodium terephthalate@graphene hybrid anode materials for sodium-ion batteries. RSC Advances, 2016, 6, 57098-57102.	3.6	49
57	Ultrathin Li ₄ Ti ₅ O ₁₂ Nanosheets as Anode Materials for Lithium and Sodium Storage. ACS Applied Materials & amp; Interfaces, 2016, 8, 16718-16726.	8.0	87
58	Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries. Journal of Solid State Electrochemistry, 2015, 19, 1027-1035.	2.5	13
59	A bulky and flexible electrocatalyst for efficient hydrogen evolution based on the growth of MoS2 nanoparticles on carbon nanofiber foam. Journal of Materials Chemistry A, 2015, 3, 5041-5046.	10.3	100
60	Solid-state synthesis and electrochemical performance of Ce-doped Li4Ti5O12 anode materials for lithium-ion batteries. Electrochimica Acta, 2015, 174, 369-375.	5.2	54
61	Diethylenetriamine (DETA)-assisted anchoring of Co ₃ O ₄ nanorods on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 1761-1768.	10.3	79
62	Composition dependent activity of Cu–Pt nanocrystals for electrochemical reduction of CO ₂ . Chemical Communications, 2015, 51, 1345-1348.	4.1	101
63	Ternary polyaniline–graphene–TiO ₂ hybrid with enhanced activity for visible-light photo-electrocatalytic water oxidation. Journal of Materials Chemistry A, 2014, 2, 1068-1075.	10.3	68
64	Morphologies and structures of carbon coated on Li4Ti5O12 and their effects on lithium storage performance. Electrochimica Acta, 2014, 130, 470-476.	5.2	48
65	Cu ₂ O Decorated with Cocatalyst MoS ₂ for Solar Hydrogen Production with Enhanced Efficiency under Visible Light. Journal of Physical Chemistry C, 2014, 118, 14238-14245.	3.1	138
66	Solid-state synthesis and electrochemical performance of Li4Ti5O12/graphene composite for lithium-ion batteries. Electrochimica Acta, 2013, 109, 33-38.	5.2	78
67	Synthesis and Electrochemical Property of Flowerlike LiFePO4by Poly(ethylene glycol)â€assisted Hydrothermal Process. Chinese Journal of Chemical Physics, 2013, 26, 337-340	1.3	1
68	Sleeping Lion or Sick Man? Machine Learning Approaches to Deciphering Heterogeneous Images of Chinese in North America. Annals of the American Association of Geographers, 0, , 1-19.	2.2	0