Jose Vinas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1326851/publications.pdf

Version: 2024-02-01

		687363	940533
17	7,786 citations	13	16
papers	citations	h-index	g-index
17	17	17	13260
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
2	Human Endothelial Colony-Forming Cells Protect against Acute Kidney Injury. American Journal of Pathology, 2015, 185, 2309-2323.	3.8	186
3	Transfer of microRNA-486-5p from human endothelial colony forming cell–derived exosomes reduces ischemic kidney injury. Kidney International, 2016, 90, 1238-1250.	5.2	177
4	Infusion of IL-10–expressing cells protects against renal ischemia through induction of lipocalin-2. Kidney International, 2012, 81, 969-982.	5.2	93
5	NO and NOS isoforms in the development of apoptosis in renal ischemia/reperfusion. Free Radical Biology and Medicine, 2006, 40, 992-1003.	2.9	81
6	Receptor-Ligand Interaction Mediates Targeting of Endothelial Colony Forming Cell-derived Exosomes to the Kidney after Ischemic Injury. Scientific Reports, 2018, 8, 16320.	3.3	65
7	Cisplatin upregulates mitochondrial nitric oxide synthase and peroxynitrite formation to promote renal injury. Toxicology and Applied Pharmacology, 2009, 234, 236-246.	2.8	49
8	Mitochondrial NOS upregulation during renal I/R causes apoptosis in a peroxynitrite-dependent manner. Kidney International, 2006, 69, 1403-1409.	5.2	38
9	miRNA let-7e targeting MMP9 is involved in adipose-derived stem cell differentiation toward epithelia. Cell Death and Disease, 2014, 5, e1048-e1048.	6.3	38
10	miRNA let-7e Modulates the Wnt Pathway and Early Nephrogenic Markers in Mouse Embryonic Stem Cell Differentiation. PLoS ONE, 2013, 8, e60937.	2.5	25
11	Sex diversity in proximal tubule and endothelial gene expression in mice with ischemic acute kidney injury. Clinical Science, 2020, 134, 1887-1909.	4.3	21
12	Role of peroxynitrite on cytoskeleton alterations and apoptosis in renal ischemia-reperfusion. American Journal of Physiology - Renal Physiology, 2007, 292, F1673-F1680.	2.7	14
13	Inhibitory action of Wnt target gene osteopontin on mitochondrial cytochrome c release determines renal ischemic resistance. American Journal of Physiology - Renal Physiology, 2010, 299, F234-F242.	2.7	14
14	miRNA-486-5p: signaling targets and role in non-malignant disease. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	11
15	Exogenous adenosine enhances caspase-3 activity in warm renal ischaemia. Pflugers Archiv European Journal of Physiology, 2004, 447, 387-391.	2.8	7
16	The therapeutic effects of microRNAs in preclinical studies of acute kidney injury: a systematic review protocol. Systematic Reviews, 2019, 8, 235.	5.3	6
17	Benefits and risks when pushing renal regeneration. Nephrology Dialysis Transplantation, 2013, 28, i75-i75.	0.7	0