Amidou N'Diaye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1326400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Main effect and epistatic QTL affecting spike shattering and association with plant height revealed in two spring wheat (Triticum aestivum L.) populations. Theoretical and Applied Genetics, 2022, 135, 1143-1162.	3.6	6
2	Genomic Predictions for Common Bunt, FHB, Stripe Rust, Leaf Rust, and Leaf Spotting Resistance in Spring Wheat. Genes, 2022, 13, 565.	2.4	13
3	Comparison of single-trait and multi-trait genomic predictions on agronomic and disease resistance traits in spring wheat. Theoretical and Applied Genetics, 2022, 135, 2747-2767.	3.6	4
4	Genomic Prediction Accuracy of Stripe Rust in Six Spring Wheat Populations by Modeling Genotype by Environment Interaction. Plants, 2022, 11, 1736.	3.5	3
5	Genomic prediction of agronomic traits in wheat using different models and cross-validation designs. Theoretical and Applied Genetics, 2021, 134, 381-398.	3.6	21
6	Physical Mapping of QTL in Four Spring Wheat Populations under Conventional and Organic Management Systems. I. Earliness. Plants, 2021, 10, 853.	3.5	13
7	Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry. American Journal of Human Genetics, 2021, 108, 564-582.	6.2	18
8	The effects of crop attributes, selection, and recombination on Canadian bread wheat molecular variation. Plant Genome, 2021, 14, e20099.	2.8	1
9	Physical mapping of QTL associated with agronomic and end-use quality traits in spring wheat under conventional and organic management systems. Theoretical and Applied Genetics, 2021, 134, 3699-3719.	3.6	23
10	Genome-based prediction of agronomic traits in spring wheat under conventional and organic management systems. Theoretical and Applied Genetics, 2021, 135, 537.	3.6	10
11	A Combination of Leaf Rust Resistance Genes, Including Lr34 and Lr46, Is the Key to the Durable Resistance of the Canadian Wheat Cultivar, Carberry. Frontiers in Plant Science, 2021, 12, 775383.	3.6	9
12	Genetic diversity and selective sweeps in historical and modern Canadian spring wheat cultivars using the 90K SNP array. Scientific Reports, 2021, 11, 23773.	3.3	10
13	Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588, 277-283.	27.8	513
14	Copy number variation of <i>TdDof</i> controls solid-stemmed architecture in wheat. Proceedings of the United States of America, 2020, 117, 28708-28718.	7.1	33
15	Comparisons of sampling methods for assessing intra- and inter-accession genetic diversity in three rice species using genotyping by sequencing. Scientific Reports, 2020, 10, 13995.	3.3	13
16	Evaluation of variant calling tools for large plant genome re-sequencing. BMC Bioinformatics, 2020, 21, 360.	2.6	27
17	Machine learning analyses of methylation profiles uncovers tissueâ€specific gene expression patterns in wheat. Plant Genome, 2020, 13, e20027.	2.8	13
18	Genetic analyses of native Fusarium head blight resistance in two spring wheat populations identifies QTL near the B1, Ppd-D1, Rht-1, Vrn-1, Fhb1, Fhb2, and Fhb5 loci. Theoretical and Applied Genetics, 2020, 133, 2775-2796.	3.6	9

AMIDOU N'DIAYE

#	Article	IF	CITATIONS
19	Mapping quantitative trait loci associated with leaf rust resistance in five spring wheat populations using single nucleotide polymorphism markers. PLoS ONE, 2020, 15, e0230855.	2.5	25
20	Fusarium Head Blight in Durum Wheat: Recent Status, Breeding Directions, and Future Research Prospects. Phytopathology, 2019, 109, 1664-1675.	2.2	77
21	Mapping quantitative trait loci associated with common bunt resistance in a spring wheat (Triticum) Tj ETQq $1\ 1$ ().784314 3.6	rgBT /Overl
22	Mapping of Genetic Loci Conferring Resistance to Leaf Rust From Three Globally Resistant Durum Wheat Sources. Frontiers in Plant Science, 2019, 10, 1247.	3.6	21
23	High density genetic mapping of Fusarium head blight resistance QTL in tetraploid wheat. PLoS ONE, 2018, 13, e0204362.	2.5	43
24	Haplotype Loci Under Selection in Canadian Durum Wheat Germplasm Over 60 Years of Breeding: Association With Grain Yield, Quality Traits, Protein Loss, and Plant Height. Frontiers in Plant Science, 2018, 9, 1589.	3.6	29
25	Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum L. var. durum). PLoS ONE, 2018, 13, e0203283.	2.5	17
26	Genomic selection for grain yield and quality traits in durum wheat. Molecular Breeding, 2018, 38, 1.	2.1	86
27	Characterization and mapping of leaf rust resistance in four durum wheat cultivars. PLoS ONE, 2018, 13, e0197317.	2.5	23
28	Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .	12.6	2,424
29	Mapping QTLs Controlling Agronomic Traits in the â€~Attila' × â€~CDC Go' Spring Wheat Population ur Organic Management using 90K SNP Array. Crop Science, 2017, 57, 365-377.	der 1.8	30
30	Allelic variation and effects of 16 candidate genes on disease resistance in western Canadian spring wheat cultivars. Molecular Breeding, 2017, 37, 1.	2.1	11
31	Genome-wide association mapping of genomic regions associated with phenotypic traits in Canadian western spring wheat. Molecular Breeding, 2017, 37, 1.	2.1	30
32	Quantitative trait loci for resistance to stripe rust of wheat revealed using global field nurseries and opportunities for stacking resistance genes. Theoretical and Applied Genetics, 2017, 130, 2617-2635.	3.6	27
33	Mapping of QTLs associated with resistance to common bunt, tan spot, leaf rust, and stripe rust in a spring wheat population. Molecular Breeding, 2017, 37, 1.	2.1	21
34	Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms. Frontiers in Plant Science, 2017, 8, 1434.	3.6	9
35	High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat. PLoS ONE, 2017, 12, e0175285.	2.5	23
36	Population Structure and Genomewide Association Analysis of Resistance to Disease and Insensitivity to Ptr Toxins in Canadian Spring Wheat Using 90K SNP Array. Crop Science, 2017, 57, 1522-1539.	1.8	24

AMIDOU N'DIAYE

#	Article	IF	CITATIONS
37	Single Marker and Haplotype-Based Association Analysis of Semolina and Pasta Colour in Elite Durum Wheat Breeding Lines Using a High-Density Consensus Map. PLoS ONE, 2017, 12, e0170941.	2.5	96
38	QTLs associated with agronomic traits in the Attila × CDC Go spring wheat population evaluated under conventional management. PLoS ONE, 2017, 12, e0171528.	2.5	68
39	QTLs Associated with Agronomic Traits in the Cutler × AC Barrie Spring Wheat Mapping Population Using Single Nucleotide Polymorphic Markers. PLoS ONE, 2016, 11, e0160623.	2.5	36
40	Quantitative Trait Loci Associated with Phenological Development, Low-Temperature Tolerance, Grain Quality, and Agronomic Characters in Wheat (Triticum aestivum L.). PLoS ONE, 2016, 11, e0152185.	2.5	68
41	A highâ€density, <scp>SNP</scp> â€based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnology Journal, 2015, 13, 648-663.	8.3	386
42	A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nature Genetics, 2013, 45, 690-696.	21.4	232
43	Pooled DNA Resequencing of 68 Myocardial Infarction Candidate Genes in French Canadians. Circulation: Cardiovascular Genetics, 2012, 5, 547-554.	5.1	10
44	Identification, Replication, and Fine-Mapping of Loci Associated with Adult Height in Individuals of African Ancestry. PLoS Genetics, 2011, 7, e1002298.	3.5	93
45	Patterns of sequence polymorphism in the fleshless berry locus in cultivated and wild Vitis vinifera accessions. BMC Plant Biology, 2010, 10, 284.	3.6	19
46	Evidence of weak genetic differentiation of Striga gesnerioides populations collected in Senegal: possible relationship with traditional cowpea seed management. Theoretical and Applied Genetics, 2009, , 1.	3.6	0
47	Construction of an integrated consensus map of the apple genome based on four mapping populations. Tree Genetics and Genomes, 2008, 4, 727-743.	1.6	32
48	Mapping stem rust resistance loci effective in Kenya in Canadian spring wheat (Triticum aestivum L.) lines †AAC Prevail' and †BW961'. Canadian Journal of Plant Pathology, 0, , 1-12.	1.4	6
49	Genomeâ€wide association mapping of agronomic traits and grain characteristics in spring wheat under conventional and organic management systems. Crop Science, 0, , .	1.8	5