
Christine Poitou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1326329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential Adaptation of Human Gut Microbiota to Bariatric Surgery–Induced Weight Loss. Diabetes, 2010, 59, 3049-3057.	0.3	1,065
2	Reduction of Macrophage Infiltration and Chemoattractant Gene Expression Changes in White Adipose Tissue of Morbidly Obese Subjects After Surgery-Induced Weight Loss. Diabetes, 2005, 54, 2277-2286.	0.3	992
3	Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology, 2012, 56, 1751-1759.	3.6	657
4	Weight loss regulates inflammationâ€related genes in white adipose tissue of obese subjects. FASEB Journal, 2004, 18, 1657-1669.	0.2	569
5	Increased Infiltration of Macrophages in Omental Adipose Tissue Is Associated With Marked Hepatic Lesions in Morbid Human Obesity. Diabetes, 2006, 55, 1554-1561.	0.3	513
6	Fibrosis in Human Adipose Tissue: Composition, Distribution, and Link With Lipid Metabolism and Fat Mass Loss. Diabetes, 2010, 59, 2817-2825.	0.3	511
7	Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biology, 2008, 9, R14.	13.9	372
8	Human Adipose Tissue Macrophages: M1 and M2 Cell Surface Markers in Subcutaneous and Omental Depots and after Weight Loss. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4619-4623.	1.8	318
9	Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. Journal of Clinical Investigation, 2015, 125, 1752-1762.	3.9	272
10	Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes and Endocrinology,the, 2020, 8, 960-970.	5.5	235
11	Chemerin Correlates with Markers for Fatty Liver in Morbidly Obese Patients and Strongly Decreases after Weight Loss Induced by Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 2892-2896.	1.8	225
12	MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nature Medicine, 2018, 24, 551-555.	15.2	219
13	CD14 ^{dim} CD16 ⁺ and CD14 ⁺ CD16 ⁺ Monocytes in Obesity and During Weight Loss. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2322-2330.	1.1	210
14	Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Annals of the Rheumatic Diseases, 2011, 70, 139-144.	0.5	204
15	T Cell–Derived IL-22 Amplifies IL-1β–Driven Inflammation in Human Adipose Tissue: Relevance to Obesity and Type 2 Diabetes. Diabetes, 2014, 63, 1966-1977.	0.3	197
16	A PDGFRα-Mediated Switch toward CD9high Adipocyte Progenitors Controls Obesity-Induced Adipose Tissue Fibrosis. Cell Metabolism, 2017, 25, 673-685.	7.2	195
17	Microarray Profiling of Human Skeletal Muscle Reveals That Insulin Regulates â^1⁄4800 Genes during a Hyperinsulinemic Clamp. Journal of Biological Chemistry, 2003, 278, 18063-18068.	1.6	173
18	Rare Genetic Forms of Obesity: Clinical Approach and Current Treatments in 2016. Obesity Facts, 2016, 9. 158-173.	1.6	173

#	Article	IF	CITATIONS
19	Fate and Complex Pathogenic Effects of Dioxins and Polychlorinated Biphenyls in Obese Subjects before and after Drastic Weight Loss. Environmental Health Perspectives, 2011, 119, 377-383.	2.8	170
20	Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nature Medicine, 2015, 21, 610-618.	15.2	149
21	Mast Cells in Human Adipose Tissue: Link with Morbid Obesity, Inflammatory Status, and Diabetes. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1677-E1685.	1.8	139
22	Cathepsin S, a novel biomarker of adiposity: relevance to atherogenesis. FASEB Journal, 2005, 19, 1540-1542.	0.2	138
23	Jejunal T Cell Inflammation in Human Obesity Correlates with Decreased Enterocyte Insulin Signaling. Cell Metabolism, 2015, 22, 113-124.	7.2	130
24	GLUT2 Accumulation in Enterocyte Apical and Intracellular Membranes. Diabetes, 2011, 60, 2598-2607.	0.3	122
25	Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. Journal of Clinical Investigation, 2016, 127, 293-305.	3.9	120
26	Dynamics of Change in Total and Regional Body Composition After Gastric Bypass in Obese Patients. Obesity, 2010, 18, 760-765.	1.5	112
27	Association of Adipose Tissue and Liver Fibrosis With Tissue Stiffness in Morbid Obesity: Links With Diabetes and BMI Loss After Gastric Bypass. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 898-907.	1.8	107
28	Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction. American Journal of Clinical Nutrition, 2011, 94, 450-458.	2.2	106
29	Adipocyte Size Threshold Matters: Link with Risk of Type 2 Diabetes and Improved Insulin Resistance After Gastric Bypass. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1466-E1470.	1.8	105
30	Relationship between adiposity, emotional status and eating behaviour in obese women: role of inflammation. Psychological Medicine, 2011, 41, 1517-1528.	2.7	102
31	Metabolite Profiling Identifies Candidate Markers Reflecting the Clinical Adaptations Associated with Roux-en-Y Gastric Bypass Surgery. PLoS ONE, 2009, 4, e7905.	1.1	101
32	The advanced-DiaRem score improves prediction of diabetes remission 1Âyear post-Roux-en-Y gastric bypass. Diabetologia, 2017, 60, 1892-1902.	2.9	100
33	Association between omental adipose tissue macrophages and liver histopathology in morbid obesity: Influence of glycemic status. Journal of Hepatology, 2009, 51, 354-362.	1.8	92
34	Bariatric Surgery Following Treatment for Craniopharyngioma: A Systematic Review and Individual-Level Data Meta-Analysis. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2239-2246.	1.8	92
35	Profiling of the Three Circulating Monocyte Subpopulations in Human Obesity. Journal of Immunology, 2015, 194, 3917-3923.	0.4	92
36	Long-term Relapse of Type 2 Diabetes After Roux-en-Y Gastric Bypass: Prediction and Clinical Relevance. Diabetes Care, 2018, 41, 2086-2095.	4.3	90

#	Article	IF	CITATIONS
37	Circulating phospholipid profiling identifies portal contribution to NASH signature in obesity. Journal of Hepatology, 2015, 62, 905-912.	1.8	89
38	Relationship between Single Nucleotide Polymorphisms in Leptin, IL6 and Adiponectin Genes and their Circulating Product in Morbidly Obese Subjects before and after Gastric Banding Surgery. Obesity Surgery, 2005, 15, 11-23.	1.1	77
39	Cathepsins in Human Obesity: Changes in Energy Balance Predominantly Affect Cathepsin S in Adipose Tissue and in Circulation. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1861-1868.	1.8	77
40	Melanocortin-4 Receptor Mutations and Polymorphisms Do Not Affect Weight Loss after Bariatric Surgery. PLoS ONE, 2012, 7, e48221.	1.1	76
41	Structural and inflammatory heterogeneity in subcutaneous adipose tissue: Relation with liver histopathology in morbid obesity. Journal of Hepatology, 2012, 56, 1152-1158.	1.8	75
42	Quantitative Atlas of Cytochrome P450, UDP-Glucuronosyltransferase, and Transporter Proteins in Jejunum of Morbidly Obese Subjects. Molecular Pharmaceutics, 2016, 13, 2631-2640.	2.3	69
43	AZP-531, an unacylated ghrelin analog, improves food-related behavior in patients with Prader-Willi syndrome: A randomized placebo-controlled trial. PLoS ONE, 2018, 13, e0190849.	1.1	69
44	Adiponectin Gene Expression in Subcutaneous Adipose Tissue of Obese Women in Response to Short-Term Very Low Calorie Diet and Refeeding. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 5881-5886.	1.8	67
45	Effect of Bariatric Surgery-Induced Weight Loss on SR-BI-, ABCG1-, and ABCA1-Mediated Cellular Cholesterol Efflux in Obese Women. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 1151-1159.	1.8	67
46	Increased Basement Membrane Components in Adipose Tissue During Obesity: Links With TGFβ and Metabolic Phenotypes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2578-2587.	1.8	67
47	Needle and surgical biopsy techniques differentially affect adipose tissue gene expression profiles. American Journal of Clinical Nutrition, 2009, 89, 51-57.	2.2	66
48	Weight Loss Reduces Adipose Tissue Cathepsin S and Its Circulating Levels in Morbidly Obese Women. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1042-1047.	1.8	64
49	Validity of Leg-to-Leg Bioelectrical Impedance Analysis to Estimate Body Fat in Obesity. Obesity Surgery, 2011, 21, 917-923.	1.1	63
50	Seven Novel Deleterious LEPR Mutations Found in Early-Onset Obesity: a ΔExon6–8 Shared by Subjects From Reunion Island, France, Suggests a Founder Effect. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E757-E766.	1.8	63
51	Resistance Training and Protein Supplementation Increase Strength After Bariatric Surgery: A Randomized Controlled Trial. Obesity, 2018, 26, 1709-1720.	1.5	63
52	The FAT Score, a Fibrosis Score of Adipose Tissue: Predicting Weight-Loss Outcome After Gastric Bypass. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2443-2453.	1.8	62
53	Bariatric Surgery Induces Disruption in Inflammatory Signaling Pathways Mediated by Immune Cells in Adipose Tissue: A RNA-Seq Study. PLoS ONE, 2015, 10, e0125718.	1.1	60
54	Systematic review of bariatric surgery liver biopsies clarifies the natural history of liver disease in patients with severe obesity. Gut, 2017, 66, 1688-1696.	6.1	59

#	Article	IF	CITATIONS
55	Role of Serum Amyloid A in Adipocyte-Macrophage Cross Talk and Adipocyte Cholesterol Efflux. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 1810-1817.	1.8	58
56	Effects of Weight Loss on Bone Status after Bariatric Surgery: Association Between Adipokines and Bone Markers. Obesity Surgery, 2008, 18, 58-65.	1.1	56
57	Adipocyte ATP-Binding Cassette G1 Promotes Triglyceride Storage, Fat Mass Growth, and Human Obesity. Diabetes, 2015, 64, 840-855.	0.3	56
58	In VivoEpinephrine-Mediated Regulation of Gene Expression in Human Skeletal Muscle. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2000-2014.	1.8	55
59	Growth Hormone Therapy for Children and Adolescents with Prader-Willi Syndrome Is Associated with Improved Body Composition and Metabolic Status in Adulthood. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E328-E335.	1.8	54
60	Macrophage activation marker soluble <scp>CD</scp> 163 and nonâ€alcoholic fatty liver disease in morbidly obese patients undergoing bariatric surgery. Journal of Gastroenterology and Hepatology (Australia), 2015, 30, 1293-1300.	1.4	53
61	Effect of a Roux-en-Y Gastric Bypass on the Pharmacokinetics of Oral Morphine Using a Population Approach. Clinical Pharmacokinetics, 2014, 53, 919-930.	1.6	51
62	Comparison of results after one year between sleeve gastrectomy and gastric bypass in patients with BMI≥50 kg/m². Surgery for Obesity and Related Diseases, 2015, 11, 785-790.	1.0	49
63	High levels of CRP in morbid obesity: the central role of adipose tissue and lessons for clinical practice before and after bariatric surgery. Surgery for Obesity and Related Diseases, 2015, 11, 148-154.	1.0	49
64	Sensory Impairment in Obese Patients? Sensitivity and Pain Detection Thresholds for Electrical Stimulation After Surgery-induced Weight Loss, and Comparison With a Nonobese Population. Clinical Journal of Pain, 2013, 29, 43-49.	0.8	46
65	Salivary proteome modifications associated with periodontitis in obese patients. Journal of Clinical Periodontology, 2012, 39, 799-806.	2.3	45
66	Senescence-associated β-galactosidase in subcutaneous adipose tissue associates with altered glycaemic status and truncal fat in severe obesity. Diabetologia, 2021, 64, 240-254.	2.9	45
67	Metabolic and Adipose Tissue Signatures in Adults With Prader-Willi Syndrome: A Model of Extreme Adiposity. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 850-859.	1.8	43
68	AhR activation defends gut barrier integrity against damage occurring in obesity. Molecular Metabolism, 2020, 39, 101007.	3.0	42
69	Plasma NOV/CCN3 Levels Are Closely Associated with Obesity in Patients with Metabolic Disorders. PLoS ONE, 2013, 8, e66788.	1.1	41
70	Weight Loss, Xanthine Oxidase, and Serum Urate Levels: A Prospective Longitudinal Study of Obese Patients. Arthritis Care and Research, 2016, 68, 1036-1042.	1.5	40
71	Leptin therapy for partial lipodystrophy linked to a <i>PPARâ€Î³</i> mutation. Clinical Endocrinology, 2008, 68, 547-554.	1.2	37
72	Prevalence and Phenotype of Sleep Disorders in 60 Adults With Prader–Willi Syndrome. Sleep, 2017, 40,	0.6	36

#	Article	IF	CITATIONS
73	ls Lean Body Mass Decreased after Obesity Treatment by Adjustable Gastric Banding?. Obesity Surgery, 2007, 17, 427-433.	1.1	35
74	Similar Postoperative Safety Between Primary and Revisional Gastric Bypass for Failed Gastric Banding. JAMA Surgery, 2014, 149, 780.	2.2	35
75	Effect of topiramate on eating behaviours in Prader-Willi syndrome: TOPRADER double-blind randomised placebo-controlled study. Translational Psychiatry, 2019, 9, 274.	2.4	35
76	Lipid-rich diet enhances L-cell density in obese subjects and in mice through improved L-cell differentiation. Journal of Nutritional Science, 2015, 4, e22.	0.7	34
77	Five-year outcomes of gastric bypass for super-super-obesity (BMl≥60 kg/m²): A case matched study. Surgery for Obesity and Related Diseases, 2015, 11, 32-37.	1.0	34
78	Effect of Genotype and Previous GH Treatment on Adiposity in Adults With Prader-Willi Syndrome. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4895-4903.	1.8	33
79	Gut microbiota of obese subjects with Prader-Willi syndrome is linked to metabolic health. Gut, 2020, 69, 1229-1238.	6.1	33
80	Comparison of body composition, basal metabolic rate and metabolic outcomes of adults with Prader Willi syndrome or lesional hypothalamic disease, with primary obesity. International Journal of Obesity, 2013, 37, 1198-1203.	1.6	32
81	Five-year weight loss in primary gastric bypass and revisional gastric bypass for failed adjustable gastric banding. Surgery for Obesity and Related Diseases, 2015, 11, 19-25.	1.0	32
82	Dietary Assessment in the MetaCardis Study: Development and Relative Validity of an Online Food Frequency Questionnaire. Journal of the Academy of Nutrition and Dietetics, 2017, 117, 878-888.	0.4	32
83	Long-term outcomes of bariatric surgery in patients with bi-allelic mutations in the POMC, LEPR, and MC4R genes. Surgery for Obesity and Related Diseases, 2021, 17, 1449-1456.	1.0	29
84	Pilot Study Examining the Frequency of Several Gene Polymorphisms Involved in Morphine Pharmacodynamics and Pharmacokinetics in a Morbidly Obese Population. Obesity Surgery, 2011, 21, 1257-1264.	1.1	28
85	Central Adrenal Insufficiency Is Rare in Adults With Prader–Willi Syndrome. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2563-e2571.	1.8	27
86	Serum Amyloid A and Obstructive Sleep Apnea Syndrome before and after Surgically-Induced Weight Loss in Morbidly Obese Subjects. Obesity Surgery, 2006, 16, 1475-1481.	1.1	26
87	Intima-Media Thickness in Severe Obesity. Diabetes Care, 2013, 36, 3793-3802.	4.3	26
88	Type 2 Diabetes Remission After Gastric Bypass: What Is the Best Prediction Tool for Clinicians?. Obesity Surgery, 2015, 25, 1128-1132.	1.1	25
89	Type 2 diabetes is associated with impaired jejunal enteroendocrine GLP-1 cell lineage in human obesity. International Journal of Obesity, 2021, 45, 170-183.	1.6	25
90	Urokinase Plasminogen Activator Receptor in Adipose Tissue Macrophages of Morbidly Obese Subjects. Obesity Facts, 2011, 4, 17-25.	1.6	24

6

#	Article	IF	CITATIONS
91	Midterm outcomes of gastric bypass for elderly (aged≥60 yr) patients: a comparative study. Surgery for Obesity and Related Diseases, 2015, 11, 836-841.	1.0	24
92	Oral Morphine Pharmacokinetic in Obesity: The Role of P-Glycoprotein, MRP2, MRP3, UGT2B7, and CYP3A4 Jejunal Contents and Obesity-Associated Biomarkers. Molecular Pharmaceutics, 2016, 13, 766-773.	2.3	22
93	The effect of morbid obesity on morphine glucuronidation. Pharmacological Research, 2017, 118, 64-70.	3.1	21
94	Implication of Heterozygous Variants in Genes of the Leptin–Melanocortin Pathway in Severe Obesity. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2991-3006.	1.8	21
95	Bariatric Surgery in Obese Patients with Type 1 Diabetes: Effects on Weight Loss and Metabolic Control. Obesity Surgery, 2016, 26, 2370-2378.	1.1	20
96	Orosomucoid, a New Biomarker in the Association between Obesity and Periodontitis. PLoS ONE, 2013, 8, e57645.	1.1	20
97	COVIDâ€19 and its Severity in Bariatric Surgeryâ€Operated Patients. Obesity, 2021, 29, 24-28.	1.5	18
98	Rare genetic causes of obesity: Diagnosis and management in clinical care. Annales D'Endocrinologie, 2022, 83, 63-72.	0.6	18
99	Changes in Body Composition, Comorbidities, and Nutritional Status Associated with Lower Weight Loss After Bariatric Surgery in Older Subjects. Obesity Surgery, 2019, 29, 3589-3595.	1.1	17
100	A Melanocortin-4 Receptor Agonist Induces Skin and Hair Pigmentation in Patients with Monogenic Mutations in the Leptin-Melanocortin Pathway. Skin Pharmacology and Physiology, 2021, 34, 307-316.	1.1	16
101	Hypogonadism in Adult Males with Prader-Willi Syndrome—Clinical Recommendations Based on a Dutch Cohort Study, Review of the Literature and an International Expert Panel Discussion. Journal of Clinical Medicine, 2021, 10, 4361.	1.0	16
102	Resting-state connectivity within the brain's reward system predicts weight loss and correlates with leptin. Brain Communications, 2021, 3, fcab005.	1.5	15
103	Long-Term Weight Outcome After Bariatric Surgery in Patients with Melanocortin-4 Receptor Gene Variants: a Case–Control Study of 105 Patients. Obesity Surgery, 2022, 32, 837-844.	1.1	15
104	The human gut microbiota contributes to type-2 diabetes non-resolution 5-years after Roux-en-Y gastric bypass. Gut Microbes, 2022, 14, 2050635.	4.3	15
105	Increasing physical activity in adult women with Prader–Willi syndrome: A transferability study. Journal of Applied Research in Intellectual Disabilities, 2020, 33, 258-267.	1.3	14
106	MYT1L-associated neurodevelopmental disorder: description of 40 new cases and literature review of clinical and molecular aspects. Human Genetics, 2022, 141, 65-80.	1.8	14
107	Quality of life outcomes in two phase 3 trials of setmelanotide in patients with obesity due to LEPR or POMC deficiency. Orphanet Journal of Rare Diseases, 2022, 17, 38.	1.2	14
108	Fasting levels of glicentin are higher in Roux-en-Y gastric bypass patients exhibiting postprandial hypoglycemia during a meal test. Surgery for Obesity and Related Diseases, 2018, 14, 929-935.	1.0	13

#	Article	IF	CITATIONS
109	Weight Loss After Sleeve Gastrectomy: Does Type 2 Diabetes Status Impact Weight and Body Composition Trajectories?. Obesity Surgery, 2021, 31, 1046-1054.	1.1	12
110	Hypogonadism in Women with Prader-Willi Syndrome—Clinical Recommendations Based on a Dutch Cohort Study, Review of the Literature and an International Expert Panel Discussion. Journal of Clinical Medicine, 2021, 10, 5781.	1.0	12
111	Cognitive Structures of Obese Patients undergoing Bariatric Surgery: a Concept Mapping Analysis. Obesity Surgery, 2007, 17, 1350-1356.	1.1	11
112	Association between melanocortin-4 receptor mutations and eating behaviors in obese patients: a case–control study. International Journal of Obesity, 2014, 38, 883-885.	1.6	11
113	AA amyloidosis is an emerging cause of nephropathy in obese patients. European Journal of Internal Medicine, 2017, 39, e18-e20.	1.0	11
114	Effects of the COVID-19 pandemic and lockdown on the mental and physical health of adults with Prader-Willi syndrome. Orphanet Journal of Rare Diseases, 2021, 16, 202.	1.2	10
115	Therapeutic indications and metabolic effects of metreleptin in patients with lipodystrophy syndromes: Realâ€life experience from a national reference network. Diabetes, Obesity and Metabolism, 2022, 24, 1565-1577.	2.2	10
116	Morphine and metabolites plasma levels after administration of sustained release morphine in Roux-en-Y gastric bypass subjects versus matched control subjects. Surgery for Obesity and Related Diseases, 2017, 13, 1869-1874.	1.0	9
117	Transition of young adults with endocrine and metabolic diseases: the â€~TRANSEND' cohort. Endocrine Connections, 2021, 10, 21-28.	0.8	9
118	Physical Activity in Patients with Prader-Willi Syndrome—A Systematic Review of Observational and Interventional Studies. Journal of Clinical Medicine, 2021, 10, 2528.	1.0	8
119	Effect of COVID-19 Lockdowns on Physical Activity, Eating Behavior, Body Weight and Psychological Outcomes in a Post-Bariatric Cohort. Obesity Surgery, 2022, 32, 1-9.	1.1	8
120	Fibrogenesis Marker PRO-C3 Is Higher in Advanced Liver Fibrosis and Improves in Patients Undergoing Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1356-e1366.	1.8	6
121	Amiodarone-induced Hyperthyroidism during Massive Weight Loss Following Gastric Bypass. Obesity Surgery, 2007, 17, 1525-1528.	1.1	5
122	Laparoscopic sleeve gastrectomy in children and adolescents with Prader-Willi Syndrome: a matched control study. Surgery for Obesity and Related Diseases, 2016, 12, 213-214.	1.0	4
123	Hyponatremia in Children and Adults with Prader–Willi Syndrome: A Survey Involving Seven Countries. Journal of Clinical Medicine, 2021, 10, 3555.	1.0	4
124	Diabetes Mellitus in Prader-Willi Syndrome: Natural History during the Transition from Childhood to Adulthood in a Cohort of 39 Patients. Journal of Clinical Medicine, 2021, 10, 5310.	1.0	4
125	Metabolic signatures in an adolescent with Silver-Russell syndrome and outcomes after bariatric surgery. Surgery for Obesity and Related Diseases, 2017, 13, 1248-1250.	1.0	3
126	Human catalase gene promoter haplotype and cardiometabolic improvement after bariatric surgery. Gene, 2018, 656, 17-21.	1.0	3

#	Article	IF	CITATIONS
127	Sleep Disorders in Adults with Prader–Willi Syndrome: Review of the Literature and Clinical Recommendations Based on the Experience of the French Reference Centre. Journal of Clinical Medicine, 2022, 11, 1986.	1.0	3
128	Five-Year Changes in Weight and Diabetes Status After Bariatric Surgery for Craniopharyngioma-Related Hypothalamic Obesity: a Case–Control Study. Obesity Surgery, 2022, 32, 2321-2331.	1.1	3
129	Effet de la perte de poids après chirurgie bariatrique sur le métabolisme osseux. Cahiers De Nutrition Et De Dietetique, 2007, 42, 320-323.	0.2	2
130	Just the tip of the iceberg: difficulties in assessing and managing extreme obesity in routine clinical care. European Journal of Clinical Nutrition, 2018, 72, 452-454.	1.3	2
131	Paradoxical low severity of COVID-19 in Prader-Willi syndrome: data from a French survey on 647 patients. Orphanet Journal of Rare Diseases, 2021, 16, 325.	1.2	2
132	Carences nutritionnelles après bypass gastrique : diagnostic, prévention et traitements. Cahiers De Nutrition Et De Dietetique, 2007, 42, 153-165.	0.2	0
133	Connaître les pièges du suivi après by-pass gastrique pour obésité. Cahiers De Nutrition Et De Dietetique, 2011, 46, 187-193.	0.2	0
134	Response to Comment on Dalmas et al. Intima-Media Thickness in Severe Obesity: Links With BMI and Metabolic Status but Not With Systemic or Adipose Tissue Inflammation. Diabetes Care 2013;36:3793–3802. Diabetes Care, 2014, 37, e119-e119.	4.3	0
135	La chémérineÂ: une adipokine pro-inflammatoire impliquée dans les maladies métaboliques. Cahiers De Nutrition Et De Dietetique, 2014, 49, 88-92.	0.2	0
136	Gastrectomie longitudinale : comparaison de l'efficacité pondérale et métabolique à moyen et long terme chez des patients diabétiques et non diabétiques. Diabetes and Metabolism, 2017, 43, A6.	1.4	0
137	Score semi-quantitatif de la fibrose du tissu adipeux sous-cutané humain : un nouvel outil pour améliorer la prédiction de la réponse pondérale au bypass gastrique. Diabetes and Metabolism, 2017, 43, A7.	,1.4	0
138	Implication de l'équilibre glycémique dans la perte des cellules MAIT dans les maladies cardiométaboliques. Diabetes and Metabolism, 2017, 43, A23.	1.4	0
139	MON-LB308 Studying the Care and Social Pathway of Young Adults With Endocrine and Metabolic Diseases During Transition: The "Transend―Cohort. Journal of the Endocrine Society, 2020, 4, .	0.1	0
140	Récepteur MC4RÂ: actualités de la recherche dans l'obésité et potentiels développements thérapeutiques. Medecine Des Maladies Metaboliques, 2020, 14, 632-638.	0.1	0