
Keerthan Poologanathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1326011/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable and Renewable Bio-Based Natural Fibres and Its Application for 3D Printed Concrete: A Review. Sustainability, 2020, 12, 10485.	3.2	54
2	Development of affordable steel-framed modular buildings for emergency situations (Covid-19). Structures, 2021, 31, 862-875.	3.6	40
3	Numerical Simulation and Design Recommendations for Web Crippling Strength of Cold-Formed Steel Channels with Web Holes under Interior-One-Flange Loading at Elevated Temperatures. Buildings, 2021, 11, 666.	3.1	35
4	The challenges confronting the growth of sustainable prefabricated building construction in Australia: Construction industry views. Journal of Building Engineering, 2022, 48, 103935.	3.4	29
5	A-State-Of-The-Art review on modular building connections. Structures, 2021, 34, 1903-1922.	3.6	28
6	Development of cross laminated timber-cold-formed steel composite beam for floor system to sustainable modular building construction. Structures, 2021, 32, 681-690.	3.6	27
7	On the fire behaviour of modular floors designed with optimised cold-formed steel joists. Structures, 2021, 30, 1071-1085.	3.6	26
8	Structural behaviour of optimized coldâ€formed steel beams. Steel Construction, 2020, 13, 294-304.	0.8	25
9	Optimised cold-formed steel beams in modular building applications. Journal of Building Engineering, 2020, 32, 101607.	3.4	22
10	Energy Performance of 3D-Printed Concrete Walls: A Numerical Study. Buildings, 2021, 11, 432.	3.1	21
11	Combined bending and shear behaviour of slotted perforated steel channels: Numerical studies. Journal of Constructional Steel Research, 2019, 161, 369-384.	3.9	20
12	Local buckling strength and design of cold-formed steel beams with slotted perforations. Thin-Walled Structures, 2020, 156, 106951.	5.3	20
13	Sustainable Performance of a Modular Building System Made of Built-Up Cold-Formed Steel Beams. Buildings, 2021, 11, 460.	3.1	20
14	Raman spectroscopic study of the mineral xonotlite Ca6Si6O17(OH)2—A component of plaster boards. Materials Research Bulletin, 2012, 47, 3644-3649.	5.2	19
15	Elevated temperature thermal properties of carbon steels used in cold-formed light gauge steel frame systems. Journal of Building Engineering, 2020, 28, 101074.	3.4	19
16	Optimal design of cold-formed steel lipped channel beams: Combined bending, shear, and web crippling. Structures, 2020, 28, 825-836.	3.6	19
17	Numerical Study of Fire and Energy Performance of Innovative Light-Weight 3D Printed Concrete Wall Configurations in Modular Building System. Sustainability, 2021, 13, 2314.	3.2	17
18	New distortional buckling design rules for slotted perforated cold-formed steel beams. Journal of Constructional Steel Research. 2020, 168, 106006.	3.9	15

#	Article	IF	CITATIONS
19	Shear behaviour and design of doubly symmetric hollow flange beam with web openings. Journal of Constructional Steel Research, 2021, 185, 106836.	3.9	13
20	Web crippling tests of cold-formed steel channels with staggered web perforations. Thin-Walled Structures, 2021, 159, 107314.	5.3	12
21	Experimental study of fire resistant board configurations under standard fire conditions. Fire Safety Journal, 2020, 116, 103153.	3.1	11
22	Performance of timber girders with end-notch: Experimental and numerical investigation. Structures, 2021, 29, 730-740.	3.6	11
23	The Importance of Stud Flanges Size and Shape on the Thermal Performance of Lightweight Steel Framed Walls. Sustainability, 2021, 13, 3970.	3.2	11
24	Optimum Design of Coldâ€formed Steel Beams: Particle Swarm Optimisation and Numerical Analysis. Ce/Papers, 2019, 3, 205-210.	0.3	10
25	Experimental and Analytical Study of Masonry Subjected to Uniaxial Cyclic Compression. Materials, 2020, 13, 4505.	2.9	10
26	Shear behaviour of cold-formed stainless-steel beams with web openings: Numerical studies. Structures, 2021, 31, 127-144.	3.6	10
27	Prospects of Developing Prefabricated Masonry Walling Systems in Australia. Buildings, 2021, 11, 294.	3.1	9
28	Flexural behaviour and design of modular construction optimised beams. Structures, 2021, 32, 1048-1068.	3.6	9
29	Web crippling behaviour of slotted perforated cold-formed steel channels: IOF load case. Journal of Constructional Steel Research, 2022, 188, 106974.	3.9	9
30	Web Crippling Behaviour of Cold-Formed High Strength Steel Unlipped Channel Beams. Buildings, 2022, 12, 291.	3.1	9
31	Fire performance of innovative 3D printed concrete composite wall panels – A Numerical Study. Case Studies in Construction Materials, 2021, 15, e00586.	1.7	7
32	Shear behaviour of doubly symmetric rectangular hollow flange beam with circular edge-stiffened openings. Engineering Structures, 2022, 250, 113366.	5.3	7
33	Finite Element Modelling to Predict the Fire Performance of Bio-Inspired 3D-Printed Concrete Wall Panels Exposed to Realistic Fire. Buildings, 2022, 12, 111.	3.1	7
34	Shear performance of SupaCee sections with openings: Numerical studies. Journal of Constructional Steel Research, 2022, 190, 107142.	3.9	7
35	Thermal Performance of LSF Wall Systems with Vacuum Insulation Panels. Buildings, 2021, 11, 621.	3.1	7
36	Finite Element Analyses of Coldâ€formed Stainless Steel Beam with Web Openings in Shear. Ce/Papers, 2019, 3, 907-912.	0.3	5

#	Article	IF	CITATIONS
37	Finite Element Analyses of Coldâ€formed Stainless Steel Beams Subject to Shear. Ce/Papers, 2019, 3, 931-936.	0.3	5
38	Web Crippling Behaviour of Coldâ€formed Stainless Steel Beams with Nonâ€Circular Web Opening. Ce/Papers, 2019, 3, 937-942.	0.3	5
39	Crack Detection and Localisation in Steel-Fibre-Reinforced Self-Compacting Concrete Using Triaxial Accelerometers. Sensors, 2021, 21, 2044.	3.8	5
40	Fire resistance of 3D printed concrete composite wall panels exposed to various fire scenarios. Journal of Structural Fire Engineering, 2021, 12, 377-409.	0.8	5
41	Web crippling design of modular construction optimised beams under ETF loading. Journal of Building Engineering, 2021, 43, 103072.	3.4	5
42	Numerical simulation and design of stainless steel hollow flange beams under shear. Journal of Constructional Steel Research, 2021, 176, 106414.	3.9	4
43	Bending-shear interaction of cold-formed stainless steel lipped channel sections. Structures, 2021, 30, 1042-1055.	3.6	4
44	Evaluation of fire performance of lightweight concrete wall panels using finite element analysis. Journal of Structural Fire Engineering, 2021, 12, 328-362.	0.8	4
45	Finite element analysis of lightweight composite sandwich panels exposed to fire. Journal of Building Engineering, 2021, 40, 102329.	3.4	4
46	Web crippling of slotted perforated Cold-Formed Steel channels under EOF load case: Simulation and design. Journal of Building Engineering, 2021, 44, 103306.	3.4	4
47	Flexural behaviour and design of hollow flange cold-formed steel beam filled with lightweight normal and lightweight high strength concrete. Journal of Building Engineering, 2022, 48, 103878.	3.4	4
48	Web crippling design of channel beams: Carbon steel, stainless steel and aluminium. Journal of Constructional Steel Research, 2022, 196, 107427.	3.9	4
49	Modular Building Design: Postâ€Brexit Housing. Ce/Papers, 2019, 3, 219-224.	0.3	2
50	Shear behaviour of screw fastened rectangular hollow flange beams with web openings. Journal of Constructional Steel Research, 2022, 189, 107019.	3.9	2
51	Informed Finite Element Modelling for Wire and Arc Additively Manufactured Metallics—A Case Study on Modular Building Connections. Buildings, 2022, 12, 5.	3.1	2
52	Shear performance of lightweight concrete filled hollow flange cold-formed steel beams. Case Studies in Construction Materials, 2022, , e01160.	1.7	1
53	Web crippling behaviour of cold-formed high-strength steel unlipped channel beams under End-One-Flange load case. Case Studies in Construction Materials, 2022, 16, e01022.	1.7	0
54	Behaviour of Lightweight Concrete Wall Panel under Axial Loading: Experimental and Numerical Investigation toward Sustainability in Construction Industry. Buildings, 2021, 11, 620.	3.1	0