Christian Körner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1325908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The use of â€~altitude' in ecological research. Trends in Ecology and Evolution, 2007, 22, 569-574.	4.2	2,120
2	Alpine Plant Life. , 2003, , .		1,691
3	A re-assessment of high elevation treeline positions and their explanation. Oecologia, 1998, 115, 445-459.	0.9	1,101
4	A worldâ€wide study of high altitude treeline temperatures. Journal of Biogeography, 2004, 31, 713-732.	1.4	1,085
5	Carbon limitation in trees. Journal of Ecology, 2003, 91, 4-17.	1.9	908
6	Phenology Under Global Warming. Science, 2010, 327, 1461-1462.	6.0	842
7	Alpine Plant Life. , 1999, , .		637
8	Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography, 2011, 38, 406-416.	1.4	611
9	Plant CO 2 responses: an issue of definition, time and resource supply. New Phytologist, 2006, 172, 393-411.	3.5	552
10	Paradigm shift in plant growth control. Current Opinion in Plant Biology, 2015, 25, 107-114.	3.5	516
11	Alpine Treelines. , 2012, , .		508
12	A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 2020, 45, 86-103.	1.2	482
13	Carbon Flux and Growth in Mature Deciduous Forest Trees Exposed to Elevated CO2. Science, 2005, 309, 1360-1362.	6.0	477
14	Moving beyond photosynthesis: from carbon source to sinkâ€driven vegetation modeling. New Phytologist, 2014, 201, 1086-1095.	3.5	421
15	Precipitation manipulation experiments – challenges and recommendations for the future. Ecology Letters, 2012, 15, 899-911.	3.0	411
16	Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos, 2002, 98, 361-374.	1.2	339
17	The underestimated importance of belowground carbon input for forest soil animal food webs. Ecology Letters, 2007, 10, 729-736.	3.0	317
18	Non-structural carbohydrate pools in a tropical forest. Oecologia, 2005, 143, 11-24.	0.9	302

#	Article	IF	CITATIONS
19	Do global change experiments overestimate impacts on terrestrial ecosystems?. Trends in Ecology and Evolution, 2011, 26, 236-241.	4.2	300
20	Why are there global gradients in species richness? mountains might hold the answer. Trends in Ecology and Evolution, 2000, 15, 513-514.	4.2	294
21	Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agricultural and Forest Meteorology, 2012, 165, 73-81.	1.9	288
22	Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO ₂ . New Phytologist, 2021, 229, 2413-2445.	3.5	286
23	The carbon charging of pines at the climatic treeline: a global comparison. Oecologia, 2003, 135, 10-21.	0.9	280
24	ATMOSPHERIC SCIENCE: Slow in, Rapid outCarbon Flux Studies and Kyoto Targets. Science, 2003, 300, 1242-1243.	6.0	279
25	Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiology, 2005, 25, 641-650.	1.4	269
26	80th birthday Flora: Morphology, Distribution, Functional Ecology of Plants, 1989, 182, 353-383.	0.6	255
27	Largeâ€scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy, 2012, 4, 611-616.	2.5	252
28	Long term effects of naturally elevated CO2 on mediterranean grassland and forest trees. Oecologia, 1994, 99, 343-351.	0.9	250
29	Recent decline in precipitation and tree growth in the eastern Mediterranean. Global Change Biology, 2007, 13, 1187-1200.	4.2	245
30	Mountain Biodiversity, Its Causes and Function. Ambio, 2004, 33, 11.	2.8	241
31	Tree surface temperature in an urban environment. Agricultural and Forest Meteorology, 2010, 150, 56-62.	1.9	240
32	A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alpine Botany, 2011, 121, 73.	1.1	239
33	Thirty years of in situ tree growth under elevated CO 2 : a model for future forest responses?. Global Change Biology, 1997, 3, 463-471.	4.2	231
34	The interaction between freezing tolerance and phenology in temperate deciduous trees. Frontiers in Plant Science, 2014, 5, 541.	1.7	229
35	Emerging opportunities and challenges in phenology: a review. Ecosphere, 2016, 7, e01436.	1.0	225
36	Plant Growth Modelling and Applications: The Increasing Importance of Plant Architecture in Growth Models. Annals of Botany, 2007, 101, 1053-1063.	1.4	220

#	Article	IF	CITATIONS
37	A global inventory of mountains for bio-geographical applications. Alpine Botany, 2017, 127, 1-15.	1.1	217
38	Does carbon storage limit tree growth?. New Phytologist, 2014, 201, 1096-1100.	3.5	212
39	Infraâ€red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology, 2010, 16, 2602-2613.	4.2	208
40	Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia, 1996, 105, 94-99.	0.9	197
41	A climate-based model to predict potential treeline position around the globe. Alpine Botany, 2014, 124, 1-12.	1.1	195
42	Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant and Soil, 2009, 324, 91-102.	1.8	186
43	Belowground carbon trade among tall trees in a temperate forest. Science, 2016, 352, 342-344.	6.0	182
44	Construction costs, chemical composition and payback time of high- and low-irradiance leaves. Journal of Experimental Botany, 2006, 57, 355-371.	2.4	181
45	Global patterns of mobile carbon stores in trees at the highâ€elevation tree line. Global Ecology and Biogeography, 2012, 21, 861-871.	2.7	175
46	Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agricultural and Forest Meteorology, 2007, 146, 29-37.	1.9	172
47	Where, why and how? Explaining the lowâ€ŧemperature range limits of temperate tree species. Journal of Ecology, 2016, 104, 1076-1088.	1.9	171
48	Surplus Carbon Drives Allocation and Plant–Soil Interactions. Trends in Ecology and Evolution, 2020, 35, 1110-1118.	4.2	171
49	Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species. Tree Physiology, 2014, 34, 377-388.	1.4	167
50	Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees - Structure and Function, 2002, 16, 331-337.	0.9	165
51	Altitudinal differences in flower traits and reproductive allocation. Flora: Morphology, Distribution, Functional Ecology of Plants, 2004, 199, 70-81.	0.6	161
52	A matter of tree longevity. Science, 2017, 355, 130-131.	6.0	158
53	In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Global Change Biology, 2002, 8, 1109-1117.	4.2	156
54	The Grand Challenges in Functional Plant Ecology. Frontiers in Plant Science, 2011, 2, 1.	1.7	155

#	Article	IF	CITATIONS
55	Small differences in arrival time influence composition and productivity of plant communities. New Phytologist, 2008, 177, 698-705.	3.5	150
56	Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 493-498.	1.8	147
57	Advances in Monitoring and Modelling Climate at Ecologically Relevant Scales. Advances in Ecological Research, 2018, , 101-161.	1.4	146
58	A field study of the effects of elevated CO 2 on plant biomass and community structure in a calcareous grassland. Oecologia, 1999, 118, 39-49.	0.9	144
59	European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytologist, 2013, 200, 1166-1175.	3.5	144
60	Central <scp>E</scp> uropean hardwood trees in a highâ€ <scp>CO</scp> ₂ future: synthesis of an 8â€year forest canopy <scp>CO</scp> ₂ enrichment project. Journal of Ecology, 2013, 101, 1509-1519.	1.9	141
61	The Role of Photoperiodism in Alpine Plant Development. Arctic, Antarctic, and Alpine Research, 2003, 35, 361-368.	0.4	140
62	Soil moisture effects determine CO2 responses of grassland species. Oecologia, 2000, 125, 380-388.	0.9	139
63	Web-FACE: a new canopy free-air CO2 enrichment system for tall trees in mature forests. Oecologia, 2002, 133, 1-9.	0.9	139
64	Tree rings and volcanic cooling. Nature Geoscience, 2012, 5, 836-837.	5.4	137
65	Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiology, 2014, 34, 981-992.	1.4	136
66	Ecological and Land Use Studies Along Elevational Gradients. Mountain Research and Development, 2007, 27, 58-65.	0.4	135
67	Water savings in mature deciduous forest trees under elevated CO ₂ . Global Change Biology, 2007, 13, 2498-2508.	4.2	135
68	Inter- and intra-annual stable carbon and oxygen isotope signals in response to drought in Mediterranean pines. Agricultural and Forest Meteorology, 2013, 168, 59-68.	1.9	133
69	BIOSPHERE RESPONSES TO CO2ENRICHMENT. , 2000, 10, 1590-1619.		130
70	Canopy CO 2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytologist, 2006, 172, 319-329.	3.5	130
71	Climatic treelines: conventions, global patterns, causes. Erdkunde, 2007, 61, 316-324.	0.4	129
72	Growth responses of an alpine grassland to elevated CO2. Oecologia, 1996, 105, 43-52.	0.9	126

#	Article	IF	CITATIONS
73	Atmospheric CO 2 enrichment of alpine treeline conifers. New Phytologist, 2002, 156, 363-375.	3.5	124
74	Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species. Oecologia, 2013, 171, 663-678.	0.9	122
75	Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agricultural and Forest Meteorology, 2011, 151, 1632-1640.	1.9	121
76	A TEST OF THE TREELINE CARBON LIMITATION HYPOTHESIS BY IN SITU CO2ENRICHMENT AND DEFOLIATION. Ecology, 2005, 86, 1288-1300.	1.5	119
77	The 90 ways to describe plant temperature. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 16-21.	1.1	119
78	Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Functional Plant Biology, 2013, 40, 531.	1.1	118
79	Alpine Plant Life. , 2021, , .		116
80	Growth and phenology of mature temperate forest trees in elevated CO2. Global Change Biology, 2006, 12, 848-861.	4.2	114
81	Plant adaptation to cold climates. F1000Research, 2016, 5, 2769.	0.8	110
82	Responses of Humid Tropical Trees to Rising CO2. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 61-79.	3.8	109
83	Biomass turnover time in terrestrial ecosystems halved by land use. Nature Geoscience, 2016, 9, 674-678.	5.4	108
84	Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing. Oecologia, 2004, 141, 489-501.	0.9	107
85	A dynamic leaf gasâ€exchange strategy is conserved in woody plants under changing ambient CO ₂ : evidence from carbon isotope discrimination in paleo and CO ₂ enrichment studies. Clobal Change Biology, 2016, 22, 889-902.	4.2	106
86	Spring frost and growing season length coâ€control the cold range limits of broadâ€leaved trees. Journal of Biogeography, 2014, 41, 773-783.	1.4	105
87	The responses of alpine grassland to four seasons of CO2 enrichment: a synthesis. Acta Oecologica, 1997, 18, 165-175.	0.5	104
88	Treelines Will be Understood Once the Functional Difference Between a Tree and a Shrub Is. Ambio, 2012, 41, 197-206.	2.8	104
89	Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Climatic Change, 2011, 106, 203-223.	1.7	103
90	Altitudinal Variation of Leaf Diffusive Conductance and Leaf Anatomy in Heliophytes of Montane New Guinea and their Interrelation with Microclimate. Flora: Morphology, Distribution, Functional Ecology of Plants, 1983, 174, 91-135.	0.6	98

#	Article	IF	CITATIONS
91	Sustained enhancement of photosynthesis in mature deciduous forest trees after 8Âyears of free air CO2 enrichment. Planta, 2010, 232, 1115-1125.	1.6	96
92	Coldest places on earth with angiosperm plant life. Alpine Botany, 2011, 121, 11-22.	1.1	96
93	Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. Journal of Ecology, 2009, 97, 57-66.	1.9	94
94	Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia, 2013, 171, 653-662.	0.9	93
95	Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Communications, 2019, 10, 2171.	5.8	92
96	Nutrient relations in calcareous grassland under elevated CO 2. Oecologia, 1998, 116, 67-75.	0.9	89
97	A Test of Treeline Theory on a Montane Permafrost Island. Arctic, Antarctic, and Alpine Research, 2006, 38, 113-119.	0.4	88
98	Water availability predicts forest canopy height at the globalÂscale. Ecology Letters, 2015, 18, 1311-1320.	3.0	87
99	Climate and soils together regulate photosynthetic carbon isotope discrimination within C ₃ plants worldwide. Global Ecology and Biogeography, 2018, 27, 1056-1067.	2.7	85
100	Biomass allocation and canopy development in spruce model ecosystems under elevated CO 2 and increased N deposition. Oecologia, 1997, 113, 104-114.	0.9	84
101	Ecological impacts of atmospheric CO 2 enrichment on terrestrial ecosystems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 2023-2041.	1.6	84
102	Earlier leafâ€out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. Journal of Ecology, 2014, 102, 981-988.	1.9	83
103	Effects of elevated CO 2 and phosphorus addition on productivity and community composition of intact monoliths from calcareous grassland. Oecologia, 1998, 116, 50-56.	0.9	80
104	Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia, 2010, 162, 853-863.	0.9	80
105	Elevational species shifts in a warmer climate are overestimated when based on weather station data. International Journal of Biometeorology, 2011, 55, 645-654.	1.3	80
106	Does Global Increase of CO 2 Alter Stomatal Density?. Flora: Morphology, Distribution, Functional Ecology of Plants, 1988, 181, 253-257.	0.6	79
107	Winter crop growth at low temperature may hold the answer for alpine treeline formation. Plant Ecology and Diversity, 2008, 1, 3-11.	1.0	79
108	On the use of elevation, altitude, and height in the ecological and climatological literature. Oecologia, 2013, 171, 335-337.	0.9	79

#	Article	IF	CITATIONS
109	Increase in tree-ring width in subalpine Pinus cembra from the central Alps that may be CO2-related. Trees - Structure and Function, 1995, 9, 181.	0.9	78
110	Rapid mixing between old and new C pools in the canopy of mature forest trees. Plant, Cell and Environment, 2007, 30, 963-972.	2.8	76
111	Tree seedling responses to in situ CO2 -enrichment differ among species and depend on understorey light availability. Global Change Biology, 2000, 6, 213-226.	4.2	75
112	Conifer stem growth at the altitudinal treeline in response to four years of CO2 enrichment. Global Change Biology, 2006, 12, 2417-2430.	4.2	75
113	End of season carbon supply status of woody species near the treeline in western China. Basic and Applied Ecology, 2006, 7, 370-377.	1.2	75
114	A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120479.	1.8	74
115	An alpine treeline in a carbon dioxide-rich world: synthesis of a nine-year free-air carbon dioxide enrichment study. Oecologia, 2013, 171, 623-637.	0.9	73
116	Long-term increase in climatic dryness in the East-Mediterranean as evidenced for the island of Samos. Regional Environmental Change, 2005, 5, 27-36.	1.4	72
117	Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO ₂ . Clobal Change Biology, 2010, 16, 1057-1070.	4.2	71
118	No need for pipes when the well is dry—a comment on hydraulic failure in trees. Tree Physiology, 2019, 39, 695-700.	1.4	71
119	System-level adjustments to elevated CO2 in model spruce ecosystems. Global Change Biology, 1996, 2, 377-387.	4.2	69
120	No growth stimulation by <scp>CO</scp> ₂ enrichment in alpine glacier forefield plants. Global Change Biology, 2012, 18, 985-999.	4.2	69
121	Rainfall distribution is the main driver of runoff under future CO ₂ â€concentration in a temperate deciduous forest. Global Change Biology, 2010, 16, 246-254.	4.2	68
122	Growth and carbon relations of mature <i>Picea abies</i> trees under 5Âyears of freeâ€air CO ₂ enrichment. Journal of Ecology, 2016, 104, 1720-1733.	1.9	68
123	Tree recruitment of European tree species at their current upper elevational limits in the Swiss Alps. Journal of Biogeography, 2012, 39, 1439-1449.	1.4	67
124	Early season temperature controls cambial activity and total tree ring width at the alpine treeline. Plant Ecology and Diversity, 2013, 6, 365-375.	1.0	67
125	Responses of soil microbiota of a late successional alpine grassland to long term CO2 enrichment. Plant and Soil, 1996, 184, 219-229.	1.8	66
126	Inorganic nitrogen storage in alpine snow pack in the Central Alps (Switzerland). Atmospheric Environment, 2005, 39, 2249-2259.	1.9	66

#	Article	IF	CITATIONS
127	Mountain biodiversity. Plant Ecology and Diversity, 2011, 4, 301-302.	1.0	66
128	GISâ€analysis of treeâ€line elevation in the Swiss Alps suggests no exposure effect. Journal of Vegetation Science, 2001, 12, 817-824.	1.1	62
129	The cold range limit of trees. Trends in Ecology and Evolution, 2021, 36, 979-989.	4.2	61
130	CO2 Fertilization: When, Where, How Much?. , 2007, , 9-21.		60
131	Stomatal conductance in mature deciduous forest trees exposed to elevated CO2. Trees - Structure and Function, 2007, 21, 151-159.	0.9	60
132	Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiology, 2014, 34, 302-313.	1.4	59
133	Convergence of leafâ€out towards minimum risk of freezing damage in temperate trees. Functional Ecology, 2016, 30, 1480-1490.	1.7	59
134	A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44. Nature Immunology, 2019, 20, 1129-1137.	7.0	59
135	Growth, water and nitrogen relations in grassland model ecosystems of the semi-arid Negev of Israel exposed to elevated CO2. Oecologia, 2001, 128, 251-262.	0.9	58
136	Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control. New Phytologist, 2012, 195, 794-802.	3.5	58
137	Effects of elevated CO 2 and soil quality on leaf gas exchange and aboveâ€ground growth in beech–spruce model ecosystems. New Phytologist, 1998, 140, 185-196.	3.5	56
138	Biomass allocation in herbaceous plants under grazing impact in the high semi-arid Andes. Flora: Morphology, Distribution, Functional Ecology of Plants, 2010, 205, 695-703.	0.6	56
139	Biogeography of photoautotrophs in the high polar biome. Frontiers in Plant Science, 2015, 6, 692.	1.7	56
140	Ecological consequences of the expansion of N2-fixing plants in cold biomes. Oecologia, 2014, 176, 11-24.	0.9	55
141	Nutrients and sink activity drive plant CO 2 responses – caution with literatureâ€based analysis. New Phytologist, 2003, 159, 537-538.	3.5	54
142	Fine root responses of mature deciduous forest trees to free air carbon dioxide enrichment (FACE). Functional Ecology, 2009, 23, 913-921.	1.7	54
143	Do the elevational limits of deciduous tree species match their thermal latitudinal limits?. Global Ecology and Biogeography, 2013, 22, 913-923.	2.7	52
144	Tropical Forests in a Co2-Rich World. Climatic Change, 1998, 39, 297-315.	1.7	51

#	Article	IF	CITATIONS
145	Why Is the Alpine Flora Comparatively Robust against Climatic Warming?. Diversity, 2021, 13, 383.	0.7	51
146	Speciesâ€specific tree growth responses to 9 years of CO ₂ enrichment at the alpine treeline. Journal of Ecology, 2011, 99, 383-394.	1.9	50
147	Seed production and seed quality in a calcareous grassland in elevated CO2. Global Change Biology, 2003, 9, 873-884.	4.2	49
148	Effects of elevated CO2 and increased nitrogen deposition on photosynthesis and growth of understory plants in spruce model ecosystems. Oecologia, 1996, 106, 172-180.	0.9	48
149	A simple method for testing leaf responses of tall tropical forest trees to elevated CO2. Oecologia, 1996, 107, 421-425.	0.9	47
150	Nitrogen status of conifer needles at the alpine treeline. Plant Ecology and Diversity, 2009, 2, 233-241.	1.0	47
151	Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated <scp>CO</scp> ₂ concentration (canopy <scp>FACE</scp>). Global Change Biology, 2012, 18, 757-768.	4.2	47
152	Challenges in elevated CO2 experiments on forests. Trends in Plant Science, 2010, 15, 5-10.	4.3	46
153	How accurately can minimum temperatures at the cold limits of tree species be extrapolated from weather station data?. Agricultural and Forest Meteorology, 2014, 184, 257-266.	1.9	46
154	Thermal imaging reveals massive heat accumulation in flowers across a broad spectrum of alpine taxa. Alpine Botany, 2014, 124, 27-35.	1.1	44
155	Defoliation reduces growth but not carbon reserves in Mediterranean Pinus pinaster trees. Trees - Structure and Function, 2015, 29, 1187-1196.	0.9	44
156	Leaf carbohydrate responses to CO2 enrichment at the top of a tropical forest. Oecologia, 1998, 116, 18-25.	0.9	43
157	Differential phosphorus and nitrogen effects drive species and community responses to elevated CO2 in semi-arid grassland. Functional Ecology, 2003, 17, 766-777.	1.7	42
158	Share the wealth: Trees with greater ectomycorrhizal species overlap share more carbon. Molecular Ecology, 2020, 29, 2321-2333.	2.0	42
159	No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO ₂ enrichment. Global Change Biology, 2010, 16, 2830-2843.	4.2	41
160	Genetic vs. nonâ€genetic responses of leaf morphology and growth to elevation in temperate tree species. Functional Ecology, 2014, 28, 243-252.	1.7	39
161	Losing half the conductive area hardly impacts the water status of mature trees. Scientific Reports, 2018, 8, 15006.	1.6	39
162	In situ stomatal responses to long-term CO2 enrichment in calcareous grassland plants. Acta Oecologica, 1997, 18, 221-229.	0.5	38

#	Article	IF	CITATIONS
163	Morphological adjustments of mature Quercus ilex trees to elevated CO2. Acta Oecologica, 1997, 18, 361-365.	0.5	38
164	The Ecological Significance of Pubescence in Saussurea Medusa, a High-Elevation Himalayan "Woolly Plant― Arctic, Antarctic, and Alpine Research, 2008, 40, 250-255.	0.4	38
165	Life at 0°C: the biology of the alpine snowbed plant Soldanella pusilla. Alpine Botany, 2019, 129, 63-80.	1.1	38
166	Concepts in empirical plant ecology. Plant Ecology and Diversity, 2018, 11, 405-428.	1.0	37
167	Long-term 13C labeling provides evidence for temporal and spatial carbon allocation patterns in mature Picea abies. Oecologia, 2014, 175, 747-762.	0.9	35
168	Poor methodology for predicting large-scale tree die-off. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E106-E106.	3.3	34
169	A bioclimatic characterization of high elevation habitats in the Alborz mountains of Iran. Alpine Botany, 2018, 128, 1-11.	1.1	34
170	Alnus viridis expansion contributes to excess reactive nitrogen release, reduces biodiversity and constrains forest succession in the Alps. Alpine Botany, 2014, 124, 187-191.	1.1	32
171	Biodiversity and CO2: Global Change is Under Way. Gaia, 1995, 4, 234-243.	0.3	32
172	Species specific and environment induced variation of δ13C and δ15N in alpine plants. Frontiers in Plant Science, 2015, 6, 423.	1.7	31
173	Shrub Expansion of Alnus viridis Drives Former Montane Grassland into Nitrogen Saturation. Ecosystems, 2016, 19, 968-985.	1.6	31
174	Multiple mycorrhization at the coldest place known for Angiosperm plant life. Alpine Botany, 2014, 124, 193-198.	1.1	30
175	Provenance effects and allometry in beech and spruce under elevated CO2 and nitrogen on two different forest soils. Basic and Applied Ecology, 2003, 4, 467-478.	1.2	29
176	When it gets cold, plant size matters – a comment on treeline. Journal of Vegetation Science, 2016, 27, 6-7.	1.1	29
177	Leaf carbohydrate responses to CO. Oecologia, 1998, 116, 18.	0.9	27
178	Tissue-specific variation of δ13C in mature canopy trees in a temperate forest in central Europe. Basic and Applied Ecology, 2005, 6, 519-534.	1.2	26
179	Forest soil respiration reflects plant productivity across a temperature gradient in the Alps. Oecologia, 2012, 170, 1143-1154.	0.9	26

Biosphere Responses to CO 2 Enrichment. , 2000, 10, 1590.

#	Article	IF	CITATIONS
181	Response—Warming, Photoperiods, and Tree Phenology. Science, 2010, 329, 278-278.	6.0	25
182	Growth and carbon relations of temperate deciduous tree species at their upper elevation range limit. Journal of Ecology, 2014, 102, 1537-1548.	1.9	25
183	Carbon and nitrogen stable isotope signals for an entire alpine flora, based on herbarium samples. Alpine Botany, 2016, 126, 153-166.	1.1	25
184	Mountain biodiversity, its causes and function. Ambio, 2004, Spec No 13, 11-7.	2.8	25
185	Climate and plant cover co-determine the elevational reduction in evapotranspiration in the Swiss Alps. Journal of Hydrology, 2013, 500, 75-83.	2.3	24
186	Low temperature limits for root growth in alpine species are set by cell differentiation. AoB PLANTS, 2017, 9, plx054.	1.2	24
187	Downward adjustment of carbon fluxes at the biochemical, leaf, and ecosystem scale in beech-spruce model communities exposed to long-term atmospheric CO2 enrichment. Oikos, 2001, 92, 279-290.	1.2	23
188	Hydrological consequences of declining land use and elevated <scp>CO₂</scp> in alpine grassland. Journal of Ecology, 2013, 101, 86-96.	1.9	23
189	Twelve years of low nutrient input stimulates growth of trees and dwarf shrubs in the treeline ecotone. Journal of Ecology, 2019, 107, 768-780.	1.9	23
190	Mountain definitions and their consequences. Alpine Botany, 2021, 131, 213-217.	1.1	23
191	Influence of elevated CO2 on canopy development and red:far-red ratios in two-storied stands ofRicinus communis. Oecologia, 1993, 94, 510-515.	0.9	21
192	Mechanical properties of spruce and beech wood grown in elevated CO2. Trees - Structure and Function, 2002, 16, 511-518.	0.9	21
193	Tropical epiphytes in a CO2-rich atmosphere. Acta Oecologica, 2009, 35, 60-68.	0.5	21
194	The Green Cover of Mountains in a Changing Environment. Advances in Global Change Research, 2005, , 367-375.	1.6	20
195	Response: complexities of sustainable forest use. GCB Bioenergy, 2013, 5, 1-2.	2.5	20
196	A Humboldtian view of mountains. Science, 2019, 365, 1061-1061.	6.0	20
197	A hierarchical inventory of the world's mountains for global comparative mountain science. Scientific Data, 2022, 9, 149.	2.4	20
198	Windthrow damage in Picea abies is associated with physical and chemical stem wood properties. Trees - Structure and Function, 2008, 22, 463-473.	0.9	19

#	Article	IF	CITATIONS
199	Flowering phenology in alpine grassland strongly responds to shifts in snowmelt but weakly to summer drought. Alpine Botany, 2021, 131, 73-88.	1.1	19
200	Fine root traits in adult trees of evergreen and deciduous taxa from low and high elevation in the Alps. Alpine Botany, 2011, 121, 107-112.	1.1	17
201	Plant species dominance shifts across erosion edge–meadow transects in the Swiss Alps. Oecologia, 2013, 171, 693-703.	0.9	17
202	The â€ĩisland effect' in terrestrial global change experiments: a problem with no solution?. AoB PLANTS, 2015, 7, plv092.	1.2	17
203	Halving sunlight reveals no carbon limitation of aboveground biomass production in alpine grassland. Global Change Biology, 2020, 26, 1857-1872.	4.2	17
204	Creative Use of Mountain Biodiversity Databases: The Kazbegi Research Agenda of GMBA-DIVERSITAS. Mountain Research and Development, 2007, 27, 276-281.	0.4	16
205	Elevational trends of biodiversity and plant traits do not converge—a test in the Helan Range, NW China. Plant Ecology, 2009, 205, 273-283.	0.7	16
206	No slope exposure effect on alpine treeline position in the Three Parallel Rivers Region, SW China. Alpine Botany, 2013, 123, 87-95.	1.1	15
207	Alnus shrub expansion increases evapotranspiration in the Swiss Alps. Regional Environmental Change, 2018, 18, 1375-1385.	1.4	15
208	Flowerâ€visitor communities of an arctoâ€elpine plant—Global patterns in species richness, phylogenetic diversity and ecological functioning. Molecular Ecology, 2019, 28, 318-335.	2.0	15
209	Responses of shoot and root gas exchange, leaf blade expansion and biomass production to pulses of elevated C02in hydroponic wheat. Journal of Experimental Botany, 1995, 46, 1661-1667.	2.4	14
210	Increased Nitrogen Availability in the Soil Under Mature Picea abies Trees Exposed to Elevated CO2 Concentrations. Frontiers in Forests and Global Change, 2019, 2, .	1.0	14
211	Drought at erosion edges selects for a â€~hidden' keystone species. Plant Ecology and Diversity, 2011, 4, 303-311.	1.0	13
212	High Metabolic Function and Resilience of NKG2A-Educated NK Cells. Frontiers in Immunology, 2020, 11, 559576.	2.2	13
213	Explaining the exceptional 4270Âm high elevation limit of an evergreen oak in the south-eastern Himalayas. Tree Physiology, 2020, 40, 1327-1342.	1.4	13
214	Biomass allocation and seasonal non-structural carbohydrate dynamics do not explain the success of tall forbs in short alpine grassland. Oecologia, 2021, 197, 1063-1077.	0.9	13
215	â€ [~] Fading of the temperatureâ€growth coupling' in treeline trees reflects a conceptual bias. Global Change Biology, 2021, 27, 3951-3952.	4.2	13
216	Distinct Signatures in the Receptor Repertoire Discriminate CD56bright and CD56dim Natural Killer Cells. Frontiers in Immunology, 2020, 11, 568927.	2.2	12

#	Article	IF	CITATIONS
217	Plant–Environment Interactions. , 2013, , 1065-1166.		11
218	Respiratory fluxes and fine root responses in mature Picea abies trees exposed to elevated atmospheric CO2 concentrations. Biogeochemistry, 2015, 124, 95-111.	1.7	11
219	GenotypeÂ×Âelevated CO 2 interaction and allocation in calcareous grassland species. New Phytologist, 2001, 151, 637-645.	3.5	10
220	Leaf turnover and herbivory in the tall tussock grass Festuca orthophylla in the Andean Altiplano. Alpine Botany, 2013, 123, 13-20.	1.1	10
221	Spring patterns of freezing resistance and photosynthesis of two leaf phenotypes of Hedera helix. Basic and Applied Ecology, 2014, 15, 543-550.	1.2	10
222	Photosynthetic enhancement and diurnal stem and soil carbon fluxes in a mature Norway spruce stand under elevated CO2. Environmental and Experimental Botany, 2016, 124, 110-119.	2.0	10
223	Alpine Ecosystems. , 2013, , 148-157.		9
224	Upregulation of HLA-F expression by BK polyomavirus infection induces immune recognition by KIR3DS1-positive natural killer cells. Kidney International, 2021, 99, 1140-1148.	2.6	9
225	When metaâ€analysis fails: A case about stomata. Global Change Biology, 2017, 23, 2533-2534.	4.2	8
226	KIR3DS1 directs NK cell–mediated protection against human adenovirus infections. Science Immunology, 2021, 6, eabe2942.	5.6	8
227	Mountain ecosystems in a changing environment. Eco Mont, 2014, 6, 71-77.	0.1	7
228	Limits and Strengths of Tree-Ring Stable Isotopes. Tree Physiology, 2022, , 399-428.	0.9	7
229	Climatic Controls of the Global High Elevation Treelines. , 2020, , 275-281.		6
230	Water relations of "trailingâ€edge―evergreen oaks in the semiâ€arid upper Yangtze region, SE Himalaya. Journal of Systematics and Evolution, 2021, , .	1.6	5
231	Alpine treelines. , 2021, , 141-173.		5
232	Effects of 4years of CO2 enrichment on the abundance of leaf-galls and leaf-mines in mature oaks. Acta Oecologica, 2008, 34, 139-146.	0.5	4
233	Elevation-specific responses of phenology in evergreen oaks from their low-dry to their extreme high-cold range limits in the SE Himalaya. Alpine Botany, 2021, 131, 89-102.	1.1	4
234	Rhizosphere â€~Trade' Is an Unnecessary Analogy: Response to Noë. Trends in Ecology and Evolution, 2021, 36, 176-177.	4.2	4

CHRISTIAN KöRNER IF CITATIONS Soil invertebrate abundance, diversity, and community composition across steep high elevation 0.4 snowmelt gradients in the European Alps. Arctic, Antarctic, and Alpine Research, 2021, 53, 288-299. When growth controls photosynthesis., 2012,,. 3 Plant Adaptations to Alpine Environments., 2020, , 355-361. Tools Shape Paradigms of Plant-Environment Interactions. Progress in Botany Fortschritte Der 0.1 3 The forest's nutrient cycle drives its carbon cycle. Tree Physiology, 2022, 42, 425-427. Mountain Ecosystems: Studies in Treeline Ecology. Eos, 2005, 86, 401. 0.1 2 The alpine life zone., 2021, , 23-51. Plant ecology at high elevations., 2021, , 1-22. 2 The climate plants experience., 2021,, 65-88. Mineral nutrition., 2021, , 237-268. 2 Alpine Ecosystems and the High-Elevation Treeline., 2019,, 407-413. 0.9 1

Water and nutrient relations of mistletoes at the drought limit of their hosting evergreen oaks in 246 the semiarid upper Yangtze region, SW China. Trees - Structure and Function, 2021, 35, 387-394. Plant reproduction., 2021,, 395-449. 247 Global change at high elevation., 2021, , 451-483. 248 1 Life under and in snow: protection and limitation., 2021, , 89-118. Water relations. , 2021, , 203-236. 250 1 Vegetation of the Earth., 2013, , 1217-1262.

252 Warum gibt es eine Waldgrenze?. Biologie in Unserer Zeit, 2014, 44, 250-257. 0.3 0

#

236

238

240

241

242

243

244

245

ARTICLE

Botanik, 2020, , 1-41.

#	Article	IF	CITATIONS
253	Experiments by Nature: Strength in Realism. , 2020, , 236-240.		0
254	Carbon investments. , 2021, , 309-333.		0
255	Climatic stress. , 2021, , 175-201.		0
256	Cell division and tissue formation. , 2021, , 355-373.		0
257	Plant biomass production. , 2021, , 375-394.		0
258	Alpine soils. , 2021, , 119-140.		0
259	Populations-und Vegetationsökologie. , 2021, , 1013-1054.		0
260	Alpine climate. , 2021, , 53-64.		0
261	Uptake and loss of carbon. , 2021, , 269-308.		0
262	Pflanzen im Lebensraum. , 2021, , 947-1012.		0