List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1325846/publications.pdf Version: 2024-02-01

STHADT | FDANK

#	Article	IF	CITATIONS
1	Circadian clock control of endocrine factors. Nature Reviews Endocrinology, 2014, 10, 466-475.	9.6	353
2	Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. Journal of Clinical Investigation, 2010, 120, 4007-4020.	8.2	171
3	Regions of the JAK2 Tyrosine Kinase Required for Coupling to the Growth Hormone Receptor. Journal of Biological Chemistry, 1995, 270, 14776-14785.	3.4	152
4	Involvement of the Src Homology 2-containing Tyrosine Phosphatase SHP-2 in Growth Hormone Signaling. Journal of Biological Chemistry, 1998, 273, 2344-2354.	3.4	142
5	Tumor Necrosis Factor-α Converting Enzyme (TACE) Is a Growth Hormone Binding Protein (GHBP) Sheddase: The Metalloprotease TACE/ADAM-17 Is Critical for (PMA-Induced) GH Receptor Proteolysis and GHBP Generation*. Endocrinology, 2000, 141, 4342-4348.	2.8	129
6	Noninvasive Bioluminescence Imaging in Small Animals. ILAR Journal, 2008, 49, 103-115.	1.8	120
7	Minireview: Receptor Dimerization in CH and Erythropoietin Action—It Takes Two to Tango, But How?. Endocrinology, 2002, 143, 2-10.	2.8	107
8	Disulfide Linkage of Growth Hormone (GH) Receptors (GHR) Reflects GH-induced GHR Dimerization. Journal of Biological Chemistry, 1999, 274, 33072-33084.	3.4	89
9	Mode of Growth Hormone Action in Osteoblasts. Journal of Biological Chemistry, 2007, 282, 31666-31674.	3.4	88
10	Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice. Diabetes, 2015, 64, 3093-3103.	0.6	85
11	Interleukin-6 inhibits hepatic growth hormone signaling via upregulation of Cis and Socs-3. American Journal of Physiology - Renal Physiology, 2003, 284, G646-G654.	3.4	84
12	Insulin-Like Growth Factors Are Key Regulators of T Helper 17 Regulatory T Cell Balance in Autoimmunity. Immunity, 2020, 52, 650-667.e10.	14.3	84
13	Growth Hormone (GH)-induced Dimerization Inhibits Phorbol Ester-stimulated GH Receptor Proteolysis. Journal of Biological Chemistry, 2001, 276, 24565-24573.	3.4	83
14	ERK-dependent threonine phosphorylation of EGF receptor modulates receptor downregulation and signaling. Cellular Signalling, 2008, 20, 2145-2155.	3.6	83
15	Metalloprotease-mediated GH Receptor Proteolysis and GHBP Shedding. Journal of Biological Chemistry, 2002, 277, 50510-50519.	3.4	76
16	Blockade of Growth Hormone Receptor Shedding by a Metalloprotease Inhibitor*. Endocrinology, 1998, 139, 1927-1935.	2.8	71
17	Growth Hormone-induced Phosphorylation of Epidermal Growth Factor (EGF) Receptor in 3T3-F442A Cells. Journal of Biological Chemistry, 2003, 278, 18902-18913.	3.4	71
18	A Growth Hormone Receptor Mutation Impairs Growth Hormone Autofeedback Signaling in Pituitary Tumors. Cancer Research, 2007, 67, 7505-7511.	0.9	64

STUART J FRANK

#	Article	IF	CITATIONS
19	Growth Hormone Receptor Is a Target for Presenilin-dependent Î ³ -Secretase Cleavage. Journal of Biological Chemistry, 2005, 280, 19331-19342.	3.4	61
20	Janus Kinase 2 Determinants for Growth Hormone Receptor Association, Surface Assembly, and Signaling. Molecular Endocrinology, 2003, 17, 2211-2227.	3.7	58
21	Physical and Functional Interaction of Growth Hormone and Insulin-Like Growth Factor-I Signaling Elements. Molecular Endocrinology, 2004, 18, 1471-1485.	3.7	58
22	Caveolar and Lipid Raft Localization of the Growth Hormone Receptor and Its Signaling Elements. Journal of Biological Chemistry, 2004, 279, 20898-20905.	3.4	58
23	Growth Hormone Signaling in Human T47D Breast Cancer Cells: Potential Role for a Growth Hormone Receptor-Prolactin Receptor Complex. Molecular Endocrinology, 2011, 25, 597-610.	3.7	53
24	Growth Hormone-induced Alteration in ErbB-2 Phosphorylation Status in 3T3-F442A Fibroblasts. Journal of Biological Chemistry, 1999, 274, 36015-36024.	3.4	52
25	Augmented Stat5 Signaling Bypasses Multiple Impediments to Lactogen-Mediated Proliferation in Human β-Cells. Diabetes, 2015, 64, 3784-3797.	0.6	52
26	Genetic disruption of the cardiomyocyte circadian clock differentially influences insulin-mediated processes in the heart. Journal of Molecular and Cellular Cardiology, 2017, 110, 80-95.	1.9	52
27	Growth Hormone-Dependent Tyrosine Phosphorylation of a GH Receptor-Associated High Molecular WEIGHT Protein Immunologically Related to JAK2. Biochemical and Biophysical Research Communications, 1998, 253, 774-779.	2.1	51
28	Insulin Receptor Substrate-1-Mediated Enhancement of Growth Hormone-Induced Mitogen-Activated Protein Kinase Activation*. Endocrinology, 2000, 141, 3328-3336.	2.8	49
29	Phorbol Ester- and Growth Factor-Induced Growth Hormone (GH) Receptor Proteolysis and GH-Binding Protein Shedding: Relationship to GH Receptor Down-Regulation ¹ . Endocrinology, 2001, 142, 1137-1147.	2.8	48
30	Insulin Receptor Substrate-1 Enhances Growth Hormone-Induced Proliferation*. Endocrinology, 1999, 140, 1972-1983.	2.8	46
31	A Conformationally Sensitive CHR [Growth Hormone (CH) Receptor] Antibody: Impact on GH Signaling and GHR Proteolysis. Molecular Endocrinology, 2004, 18, 2981-2996.	3.7	44
32	Role of the Growth Hormone (GH) Receptor Transmembrane Domain in Receptor Predimerization and GH-Induced Activation. Molecular Endocrinology, 2007, 21, 1642-1655.	3.7	44
33	Activation of Growth Hormone Receptors by Growth Hormone and Growth Hormone Antagonist Dimers: Insights into Receptor Triggering. Molecular Endocrinology, 2008, 22, 978-988.	3.7	43
34	Distinct mechanisms of induction of hepatic growth hormone resistance by endogenous IL-6, TNF-α, and IL-1β. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E186-E198.	3.5	42
35	Endotoxin-Induced Proteolytic Reduction in Hepatic Growth Hormone (GH) Receptor: A Novel Mechanism for GH Insensitivity. Molecular Endocrinology, 2008, 22, 1427-1437.	3.7	40
36	Calcium channel blocker use is associated with lower fasting serum glucose among adults with diabetes from the REGARDS study. Diabetes Research and Clinical Practice, 2016, 115, 115-121.	2.8	40

#	Article	IF	CITATIONS
37	Prolactin stimulates ubiquitination, initial internalization, and degradation of its receptor via catalytic activation of Janus kinase 2. Journal of Endocrinology, 2008, 196, R1-R7.	2.6	38
38	Tumor Necrosis Factor-Â Converting Enzyme (TACE) Is a Growth Hormone Binding Protein (GHBP) Sheddase: The Metalloprotease TACE/ADAM-17 Is Critical for (PMA-Induced) GH Receptor Proteolysis and GHBP Generation. Endocrinology, 2000, 141, 4342-4348.	2.8	38
39	Janus Kinase 2 Enhances the Stability of the Mature Growth Hormone Receptor. Endocrinology, 2005, 146, 4755-4765.	2.8	37
40	Growth Hormone-Mediated Regulation of Insulin-Like Growth Factor I Promoter Activity in C6 Glioma Cells*. Endocrinology, 1999, 140, 3073-3081.	2.8	36
41	The Role of Prolactin Receptor in GH Signaling in Breast Cancer Cells. Molecular Endocrinology, 2013, 27, 266-279.	3.7	36
42	Determinants of Growth Hormone Receptor Down-Regulation. Molecular Endocrinology, 2007, 21, 1537-1551.	3.7	34
43	A Role for Grb2-Associated Binder-1 in Growth Hormone Signaling. Endocrinology, 2002, 143, 4856-4867.	2.8	32
44	Growth Hormone Alters Epidermal Growth Factor Receptor Binding Affinity via Activation of Extracellular Signal-Regulated Kinases in 3T3-F442A Cells. Endocrinology, 2004, 145, 3297-3306.	2.8	32
45	Janus Kinase 2 Influences Growth Hormone Receptor Metalloproteolysis. Endocrinology, 2006, 147, 2839-2849.	2.8	32
46	Deletion of IGF-I Receptor (IGF-IR) in Primary Osteoblasts Reduces GH-Induced STAT5 Signaling. Molecular Endocrinology, 2010, 24, 644-656.	3.7	30
47	Signaling Cross Talk between Growth Hormone (GH) and Insulin-Like Growth Factor-I (IGF-I) in Pancreatic Islet β-Cells. Molecular Endocrinology, 2011, 25, 2119-2133.	3.7	30
48	Human GH Receptor-IGF-1 Receptor Interaction: Implications for GH Signaling. Molecular Endocrinology, 2014, 28, 1841-1854.	3.7	29
49	Differential effects of REV-ERBα/β agonism on cardiac gene expression, metabolism, and contractile function in a mouse model of circadian disruption. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1487-H1508.	3.2	29
50	Branched chain amino acids selectively promote cardiac growth at the end of the awake period. Journal of Molecular and Cellular Cardiology, 2021, 157, 31-44.	1.9	29
51	Mechanistic Aspects of Crosstalk Between GH and PRL and ErbB Receptor Family Signaling. Journal of Mammary Gland Biology and Neoplasia, 2008, 13, 119-129.	2.7	24
52	Synergy in ERK activation by cytokine receptors and tyrosine kinase growth factor receptors. Cellular Signalling, 2011, 23, 417-424.	3.6	22
53	IGF-1R Modulation of Acute GH-Induced STAT5 Signaling: Role of Protein Tyrosine Phosphatase Activity. Molecular Endocrinology, 2013, 27, 1969-1979.	3.7	21
54	Classical and novel GH receptor signaling pathways. Molecular and Cellular Endocrinology, 2020, 518, 110999.	3.2	21

#	Article	IF	CITATIONS
55	Modulation of growth hormone receptor abundance and function: roles for the ubiquitin–proteasome system. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 785-794.	3.8	20
56	Reduced Proteolysis of Rabbit Growth Hormone (GH) Receptor Substituted with Mouse GH Receptor Cleavage Site. Molecular Endocrinology, 2003, 17, 1931-1943.	3.7	18
57	Impact of obesity on dayâ€night differences in cardiac metabolism. FASEB Journal, 2021, 35, e21298.	0.5	18
58	Temporal partitioning of adaptive responses of the murine heart to fasting. Life Sciences, 2018, 197, 30-39.	4.3	16
59	Insulin Receptor Substrate-1-Mediated Enhancement of Growth Hormone-Induced Mitogen-Activated Protein Kinase Activation. Endocrinology, 2000, 141, 3328-3336.	2.8	15
60	Growth Hormone, Insulin-Like Growth Factor I, and Growth: Local Knowledge. Endocrinology, 2007, 148, 1486-1488.	2.8	14
61	Inhibitory GH Receptor Extracellular Domain Monoclonal Antibodies: Three-Dimensional Epitope Mapping. Endocrinology, 2011, 152, 4777-4788.	2.8	14
62	Insulin, IGF-1, and GH Receptors Are Altered in an Adipose Tissue Depot–Specific Manner in Male Mice With Modified GH Action. Endocrinology, 2017, 158, 1406-1418.	2.8	14
63	GHR/PRLR Heteromultimer Is Composed of GHR Homodimers and PRLR Homodimers. Molecular Endocrinology, 2016, 30, 504-517.	3.7	13
64	In VivoImaging of Hepatic Growth Hormone Signaling. Molecular Endocrinology, 2006, 20, 2819-2830.	3.7	12
65	Subdomain 2, Not the Transmembrane Domain, Determines the Dimerization Partner of Growth Hormone Receptor and Prolactin Receptor. Endocrinology, 2017, 158, 3235-3248.	2.8	12
66	Endoplasmic Reticulum-Associated Degradation of Growth Hormone Receptor in Janus Kinase 2-Deficient Cells. Endocrinology, 2007, 148, 5955-5965.	2.8	11
67	Interruption of Growth Hormone Signaling via SHC and ERK in 3T3-F442A Preadipocytes upon Knockdown of Insulin Receptor Substrate-1. Molecular Endocrinology, 2009, 23, 486-496.	3.7	11
68	Growth Hormone-induced JAK2 Signaling and GH Receptor Down-regulation: Role of GH Receptor Intracellular Domain Tyrosine Residues. Endocrinology, 2012, 153, 2311-2322.	2.8	11
69	Dynamic Analysis of GH Receptor Conformational Changes by Split Luciferase Complementation. Molecular Endocrinology, 2014, 28, 1807-1819.	3.7	11
70	TIMP3 Modulates GHR Abundance and GH Sensitivity. Molecular Endocrinology, 2016, 30, 587-599.	3.7	10
71	A Small Molecule, UAB126, Reverses Diet-Induced Obesity and its Associated Metabolic Disorders. Diabetes, 2020, 69, 2003-2016.	0.6	10
72	Molecular interactions of EphA4, growth hormone receptor, Janus kinase 2, and signal transducer and activator of transcription 5B. PLoS ONE, 2017, 12, e0180785.	2.5	9

#	Article	IF	CITATIONS
73	Functional Collaboration of Insulin-Like Growth Factor-1 Receptor (IGF-1R), but Not Insulin Receptor (IR), With Acute GH Signaling in Mouse Calvarial Cells. Endocrinology, 2014, 155, 1000-1009.	2.8	8
74	Growth hormone (GH) receptor (GHR)-specific inhibition of GH-Induced signaling by soluble IGF-1 receptor (sol IGF-1R). Molecular and Cellular Endocrinology, 2019, 492, 110445.	3.2	8
75	Differential tissue response to growth hormone in mice. FEBS Open Bio, 2018, 8, 1146-1154.	2.3	7
76	Augmented Cardiac Growth Hormone Signaling Contributes to Cardiomyopathy Following Genetic Disruption of the Cardiomyocyte Circadian Clock. Frontiers in Pharmacology, 2022, 13, 836725.	3.5	6
77	Autocrine/paracrine actions of growth hormone in human melanoma cell lines. Biochemistry and Biophysics Reports, 2020, 21, 100716.	1.3	4
78	Physiology of GH action and associated human disorders. Molecular and Cellular Endocrinology, 2021, 520, 111078.	3.2	1
79	Constance Shen Pittman, MD (January 2, 1929-January 15, 2010). American Journal of the Medical Sciences, 2010, 339, 305-306.	1.1	0