
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1325796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth properties and immunogenicity of a virus generated by reverse genetics for an inactivated equine influenza vaccine. Equine Veterinary Journal, 2022, 54, 139-144.	0.9	2
2	Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature, 2022, 602, 300-306.	13.7	428
3	SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 2022, 603, 687-692.	13.7	475
4	CRISPR-Cas3-based diagnostics for SARS-CoV-2 and influenza virus. IScience, 2022, 25, 103830.	1.9	25
5	Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant. New England Journal of Medicine, 2022, 386, 995-998.	13.9	301
6	Antibody Responses to a Reverse Genetics-Derived Bivalent Inactivated Equine Influenza Vaccine in Thoroughbred Horses. Journal of Equine Veterinary Science, 2022, 109, 103860.	0.4	1
7	Anti-SARS CoV-2 IgG in COVID-19 Patients with Hematological Diseases: A Single-center, Retrospective Study in Japan. Internal Medicine, 2022, 61, 1681-1686.	0.3	2
8	A 265-Nanometer High-Power Deep-UV Light-Emitting Diode Rapidly Inactivates SARS-CoV-2 Aerosols. MSphere, 2022, 7, e0094121.	1.3	11
9	A Novel Method to Reduce ELISA Serial Dilution Assay Workload Applied to SARS-CoV-2 and Seasonal HCoVs. Viruses, 2022, 14, 562.	1.5	2
10	Correlation Analysis between Gut Microbiota Alterations and the Cytokine Response in Patients with Coronavirus Disease during Hospitalization. Microbiology Spectrum, 2022, 10, e0168921.	1.2	37
11	Efficacy of Antiviral Agents against the SARS-CoV-2 Omicron Subvariant BA.2. New England Journal of Medicine, 2022, 386, 1475-1477.	13.9	240
12	OUP accepted manuscript. Journal of Infectious Diseases, 2022, , .	1.9	0
13	Characterization of the SARS-CoV-2 B.1.621 (Mu) variant. Science Translational Medicine, 2022, 14, eabm4908.	5.8	21
14	Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature, 2022, 607, 119-127.	13.7	174
15	Therapeutic efficacy of monoclonal antibodies and antivirals against SARS-CoV-2 Omicron BA.1 in Syrian hamsters. Nature Microbiology, 2022, 7, 1252-1258.	5.9	20
16	Antibody titers against SARS-CoV-2 decline, but do not disappear for several months. EClinicalMedicine, 2021, 32, 100734.	3.2	134
17	Longitudinal antibody repertoire in "mild―versus "severe―COVID-19 patients reveals immune markers associated with disease severity and resolution. Science Advances, 2021, 7, .	4.7	63
18	Antigenic differences between equine influenza virus vaccine strains and Florida sublineage clade 1 strains isolated in Europe in 2019. Veterinary Journal, 2021, 272, 105674	0.6	11

#	Article	IF	CITATIONS
19	Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	63
20	Antibody-Dependent Enhancement of SARS-CoV-2 Infection Is Mediated by the IgG Receptors FcγRIIA and FcγRIIA but Does Not Contribute to Aberrant Cytokine Production by Macrophages. MBio, 2021, 12, e0198721.	1.8	57
21	Comparative Sensitivity of Rapid Antigen Tests for the Delta Variant (B.1.617.2) of SARS-CoV-2. Viruses, 2021, 13, 2183.	1.5	8
22	Non-propagative human parainfluenza virus type 2 nasal vaccine robustly protects the upper and lower airways against SARS-CoV-2. IScience, 2021, , 103379.	1.9	8
23	Characterization of H7N9 avian influenza viruses isolated from duck meat products. Transboundary and Emerging Diseases, 2020, 67, 792-798.	1.3	6
24	Baloxavir Marboxil Treatment of Nude Mice Infected With Influenza A Virus. Journal of Infectious Diseases, 2020, 221, 1699-1702.	1.9	9
25	Comparison of Rapid Antigen Tests for COVID-19. Viruses, 2020, 12, 1420.	1.5	166
26	Pathogenesis of Influenza A(H7N9) Virus in Aged Nonhuman Primates. Journal of Infectious Diseases, 2020, 222, 1155-1164.	1.9	8
27	Identification of Novel Adjuvants for Ebola Virus-Like Particle Vaccine. Vaccines, 2020, 8, 215.	2.1	3
28	Triple combination therapy of favipiravir plus two monoclonal antibodies eradicates influenza virus from nude mice. Communications Biology, 2020, 3, 219.	2.0	8
29	Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16587-16595.	3.3	912
30	Emergence of SARS-CoV-2 and its outlook. Global Health & Medicine, 2020, 2, 1-2.	0.6	2
31	Gargle Lavage as a Safe and Sensitive Alternative to Swab Samples to Diagnose COVID-19: A Case Report in Japan. Clinical Infectious Diseases, 2020, 71, 893-894.	2.9	51
32	Uncovering the Anti-Ebola Repertome. Cell Host and Microbe, 2020, 27, 163-165.	5.1	0
33	Sensitivity of Commercially Available Influenza Rapid Diagnostic Tests in the 2018–2019 Influenza Season. Frontiers in Microbiology, 2019, 10, 2342.	1.5	5
34	Antigenic Change in Human Influenza A(H2N2) Viruses Detected by Using Human Plasma from Aged and Younger Adult Individuals. Viruses, 2019, 11, 978.	1.5	3
35	Host protein mimics viral protein to hinder infection by Ebola virus. Nature, 2019, 566, 190-191.	13.7	0
36	Current and future influenza vaccines. Nature Medicine, 2019, 25, 212-220.	15.2	132

#	Article	IF	CITATIONS
37	Antibody-free digital influenza virus counting based on neuraminidase activity. Scientific Reports, 2019, 9, 1067.	1.6	19
38	A single amino acid change in hemagglutinin reduces the cross-reactivity of antiserum against an equine influenza vaccine strain. Archives of Virology, 2019, 164, 2355-2358.	0.9	9
39	Subclade 2.2.1-Specific Human Monoclonal Antibodies That Recognize an Epitope in Antigenic Site A of Influenza A(H5) Virus HA Detected between 2015 and 2018. Viruses, 2019, 11, 321.	1.5	1
40	Identification of Amino Acid Residues in Influenza A Virus PA-X That Contribute to Enhanced Shutoff Activity. Frontiers in Microbiology, 2019, 10, 432.	1.5	13
41	Antigenic drift originating from changes to the lateral surface of the neuraminidase head of influenza A virus. Nature Microbiology, 2019, 4, 1024-1034.	5.9	48
42	Characterization of Mouse Monoclonal Antibodies Against the HA of A(H7N9) Influenza Virus. Viruses, 2019, 11, 149.	1.5	8
43	Treatment of Highly Pathogenic H7N9 Virus-Infected Mice with Baloxavir Marboxil. Viruses, 2019, 11, 1066.	1.5	6
44	G Protein Pathway Suppressor 1 Promotes Influenza Virus Polymerase Activity by Activating the NF-κB Signaling Pathway. MBio, 2019, 10, .	1.8	11
45	Genetic and antigenic characterisation of influenza A(H3N2) viruses isolated in Yokohama during the 2016/17 and 2017/18 influenza seasons. Eurosurveillance, 2019, 24, .	3.9	18
46	Human protective monoclonal antibodies against the HA stem of group 2 HAs derived from an H3N2 virus-infected human. Journal of Infection, 2018, 76, 177-185.	1.7	11
47	Identification of novel amino acid residues of influenza virus PA-X that are important for PA-X shutoff activity by using yeast. Virology, 2018, 516, 71-75.	1.1	23
48	Combination Therapy With Neuraminidase and Polymerase Inhibitors in Nude Mice Infected With Influenza Virus. Journal of Infectious Diseases, 2018, 217, 887-896.	1.9	27
49	Influenza A virus nucleoprotein is acetylated by histone acetyltransferases PCAF and GCN5. Journal of Biological Chemistry, 2018, 293, 7126-7138.	1.6	41
50	lsolation and Characterization of Human Monoclonal Antibodies That Recognize the Influenza A(H1N1)pdm09 Virus Hemagglutinin Receptor-Binding Site and Rarely Yield Escape Mutant Viruses. Frontiers in Microbiology, 2018, 9, 2660.	1.5	8
51	Differences in the ease with which mutant viruses escape from human monoclonal antibodies against the HA stem of influenza A virus. Journal of Clinical Virology, 2018, 108, 105-111.	1.6	17
52	Recurring and Adaptable Binding Motifs in Broadly Neutralizing Antibodies to Influenza Virus Are Encoded on the D3-9 Segment of the Ig Gene. Cell Host and Microbe, 2018, 24, 569-578.e4.	5.1	32
53	Enhanced Replication of Highly Pathogenic Influenza A(H7N9) Virus in Humans. Emerging Infectious Diseases, 2018, 24, 746-750.	2.0	29
54	Evaluation of the fusion partner cell line SPYMEG for obtaining human monoclonal antibodies against influenza B virus. Journal of Veterinary Medical Science, 2018, 80, 1020-1024.	0.3	2

#	Article	IF	CITATIONS
55	N-Terminal Acetylation by NatB Is Required for the Shutoff Activity of Influenza A Virus PA-X. Cell Reports, 2018, 24, 851-860.	2.9	47
56	Development of an Influenza Rapid Diagnostic Kit Specific for the H7 Subtype. Frontiers in Microbiology, 2018, 9, 1346.	1.5	8
57	Strain-Specific Contribution of Eukaryotic Elongation Factor 1 Gamma to the Translation of Influenza A Virus Proteins. Frontiers in Microbiology, 2018, 9, 1446.	1.5	10
58	Ebolavirus's Foibles. Cell, 2017, 169, 773-775.	13.5	7
59	A Broadly Reactive Human Anti-hemagglutinin Stem Monoclonal Antibody That Inhibits Influenza A Virus Particle Release. EBioMedicine, 2017, 17, 182-191.	2.7	54
60	Evaluation of seasonal influenza vaccines for H1N1pdm09 and type B viruses based on a replication-incompetent PB2-KO virus. Vaccine, 2017, 35, 1892-1897.	1.7	3
61	A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets. Cell Host and Microbe, 2017, 22, 615-626.e8.	5.1	121
62	Reactivity and sensitivity of commercially available influenza rapid diagnostic tests in Japan. Scientific Reports, 2017, 7, 14483.	1.6	15
63	Emergence of Oseltamivir-Resistant H7N9 Influenza Viruses in Immunosuppressed Cynomolgus Macaques. Journal of Infectious Diseases, 2017, 216, 582-593.	1.9	16
64	The Microminipig as an Animal Model for Influenza A Virus Infection. Journal of Virology, 2017, 91, .	1.5	17
65	Diversity of antigenic mutants of influenza A(H1N1)pdm09 virus escaped from human monoclonal antibodies. Scientific Reports, 2017, 7, 17735.	1.6	21
66	Risk assessment of recent Egyptian H5N1 influenza viruses. Scientific Reports, 2016, 6, 38388.	1.6	19
67	The host protein CLUH participates in the subnuclear transport of influenza virus ribonucleoprotein complexes. Nature Microbiology, 2016, 1, 16062.	5.9	14
68	Identification of a Novel Viral Protein Expressed from the PB2 Segment of Influenza A Virus. Journal of Virology, 2016, 90, 444-456.	1.5	87
69	Amino acids substitutions in the PB2 protein of H7N9 influenza A viruses are important for virulence in mammalian hosts. Scientific Reports, 2015, 5, 8039.	1.6	40
70	Mapping of a Region of the PA-X Protein of Influenza A Virus That Is Important for Its Shutoff Activity. Journal of Virology, 2015, 89, 8661-8665.	1.5	55
71	A Novel Functional Site in the PB2 Subunit of Influenza A Virus Essential for Acetyl-CoA Interaction, RNA Polymerase Activity, and Viral Replication. Journal of Biological Chemistry, 2014, 289, 24980-24994.	1.6	19
72	Virulence-Affecting Amino Acid Changes in the PA Protein of H7N9 Influenza A Viruses. Journal of Virology, 2014, 88, 3127-3134.	1.5	100

#	Article	IF	CITATIONS
73	Receptors for enterovirus 71. Emerging Microbes and Infections, 2014, 3, 1-7.	3.0	67
74	Characterization of H7N9 influenza A viruses isolated from humans. Nature, 2013, 501, 551-555.	13.7	371
75	Functional Comparison of SCARB2 and PSGL1 as Receptors for Enterovirus 71. Journal of Virology, 2013, 87, 3335-3347.	1.5	108
76	Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14753-14758.	3.3	135
77	Human SCARB2-Dependent Infection by Coxsackievirus A7, A14, and A16 and Enterovirus 71. Journal of Virology, 2012, 86, 5686-5696.	1.5	130
78	Scavenger Receptor B2 as a Receptor for Hand, Foot, and Mouth Disease and Severe Neurological Diseases. Frontiers in Microbiology, 2012, 3, 32.	1.5	24
79	Identification of Amino Acids in Marburg Virus VP40 That Are Important for Virus-Like Particle Budding. Journal of Infectious Diseases, 2011, 204, S871-S877.	1.9	19
80	Identification of a Human SCARB2 Region That Is Important for Enterovirus 71 Binding and Infection. Journal of Virology, 2011, 85, 4937-4946.	1.5	79
81	Role of the GTPase Rab1b in <i>Ebolavirus</i> Particle Formation. Journal of Virology, 2010, 84, 4816-4820.	1.5	23
82	Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nature Medicine, 2009, 15, 798-801.	15.2	457
83	Ebola Virus Matrix Protein VP40 Uses the COPII Transport System for Its Intracellular Transport. Cell Host and Microbe, 2008, 3, 168-177.	5.1	89
84	Mapping of a Region of Ebola Virus VP40 That Is Important in the Production of Virus‣ike Particles. Journal of Infectious Diseases, 2007, 196, S291-S295.	1.9	36
85	Contributions of Two Nuclear Localization Signals of Influenza A Virus Nucleoprotein to Viral Replication. Journal of Virology, 2007, 81, 30-41.	1.5	194
86	Chimeric hPIV2/Corona-Spike Nasal Vaccine Robustly Protects the Upper and Lower Airways Against SARS-CoV-2. SSRN Electronic Journal, 0, , .	0.4	0