Seiya Yamayoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1325796/publications.pdf

Version: 2024-02-01

86 papers 6,206 citations

32 h-index 72 g-index

96 all docs 96
docs citations

96 times ranked 8526 citing authors

#	Article	IF	CITATIONS
1	Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16587-16595.	7.1	912
2	SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 2022, 603, 687-692.	27.8	475
3	Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nature Medicine, 2009, 15, 798-801.	30.7	457
4	Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature, 2022, 602, 300-306.	27.8	428
5	Characterization of H7N9 influenza A viruses isolated from humans. Nature, 2013, 501, 551-555.	27.8	371
6	Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant. New England Journal of Medicine, 2022, 386, 995-998.	27.0	301
7	Efficacy of Antiviral Agents against the SARS-CoV-2 Omicron Subvariant BA.2. New England Journal of Medicine, 2022, 386, 1475-1477.	27.0	240
8	Contributions of Two Nuclear Localization Signals of Influenza A Virus Nucleoprotein to Viral Replication. Journal of Virology, 2007, 81, 30-41.	3.4	194
9	Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature, 2022, 607, 119-127.	27.8	174
10	Comparison of Rapid Antigen Tests for COVID-19. Viruses, 2020, 12, 1420.	3.3	166
11	Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14753-14758.	7.1	135
12	Antibody titers against SARS-CoV-2 decline, but do not disappear for several months. EClinicalMedicine, 2021, 32, 100734.	7.1	134
13	Current and future influenza vaccines. Nature Medicine, 2019, 25, 212-220.	30.7	132
14	Human SCARB2-Dependent Infection by Coxsackievirus A7, A14, and A16 and Enterovirus 71. Journal of Virology, 2012, 86, 5686-5696.	3.4	130
15	A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets. Cell Host and Microbe, 2017, 22, 615-626.e8.	11.0	121
16	Functional Comparison of SCARB2 and PSGL1 as Receptors for Enterovirus 71. Journal of Virology, 2013, 87, 3335-3347.	3.4	108
17	Virulence-Affecting Amino Acid Changes in the PA Protein of H7N9 Influenza A Viruses. Journal of Virology, 2014, 88, 3127-3134.	3.4	100
18	Ebola Virus Matrix Protein VP40 Uses the COPII Transport System for Its Intracellular Transport. Cell Host and Microbe, 2008, 3, 168-177.	11.0	89

#	Article	IF	CITATIONS
19	Identification of a Novel Viral Protein Expressed from the PB2 Segment of Influenza A Virus. Journal of Virology, 2016, 90, 444-456.	3.4	87
20	Identification of a Human SCARB2 Region That Is Important for Enterovirus 71 Binding and Infection. Journal of Virology, 2011, 85, 4937-4946.	3.4	79
21	Receptors for enterovirus 71. Emerging Microbes and Infections, 2014, 3, 1-7.	6.5	67
22	Longitudinal antibody repertoire in "mild―versus "severe―COVID-19 patients reveals immune markers associated with disease severity and resolution. Science Advances, 2021, 7, .	10.3	63
23	Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	63
24	Antibody-Dependent Enhancement of SARS-CoV-2 Infection Is Mediated by the IgG Receptors $Fc^{\hat{1}3}RIIA$ and $Fc^{\hat{1}3}RIIIA$ but Does Not Contribute to Aberrant Cytokine Production by Macrophages. MBio, 2021, 12, e0198721.	4.1	57
25	Mapping of a Region of the PA-X Protein of Influenza A Virus That Is Important for Its Shutoff Activity. Journal of Virology, 2015, 89, 8661-8665.	3.4	55
26	A Broadly Reactive Human Anti-hemagglutinin Stem Monoclonal Antibody That Inhibits Influenza A Virus Particle Release. EBioMedicine, 2017, 17, 182-191.	6.1	54
27	Gargle Lavage as a Safe and Sensitive Alternative to Swab Samples to Diagnose COVID-19: A Case Report in Japan. Clinical Infectious Diseases, 2020, 71, 893-894.	5.8	51
28	Antigenic drift originating from changes to the lateral surface of the neuraminidase head of influenza A virus. Nature Microbiology, 2019, 4, 1024-1034.	13.3	48
29	N-Terminal Acetylation by NatB Is Required for the Shutoff Activity of Influenza A Virus PA-X. Cell Reports, 2018, 24, 851-860.	6.4	47
30	Influenza A virus nucleoprotein is acetylated by histone acetyltransferases PCAF and GCN5. Journal of Biological Chemistry, 2018, 293, 7126-7138.	3.4	41
31	Amino acids substitutions in the PB2 protein of H7N9 influenza A viruses are important for virulence in mammalian hosts. Scientific Reports, 2015, 5, 8039.	3.3	40
32	Correlation Analysis between Gut Microbiota Alterations and the Cytokine Response in Patients with Coronavirus Disease during Hospitalization. Microbiology Spectrum, 2022, 10, e0168921.	3.0	37
33	Mapping of a Region of Ebola Virus VP40 That Is Important in the Production of Virusâ€Like Particles. Journal of Infectious Diseases, 2007, 196, S291-S295.	4.0	36
34	Recurring and Adaptable Binding Motifs in Broadly Neutralizing Antibodies to Influenza Virus Are Encoded on the D3-9 Segment of the Ig Gene. Cell Host and Microbe, 2018, 24, 569-578.e4.	11.0	32
35	Enhanced Replication of Highly Pathogenic Influenza A(H7N9) Virus in Humans. Emerging Infectious Diseases, 2018, 24, 746-750.	4.3	29
36	Combination Therapy With Neuraminidase and Polymerase Inhibitors in Nude Mice Infected With Influenza Virus. Journal of Infectious Diseases, 2018, 217, 887-896.	4.0	27

#	Article	IF	CITATIONS
37	CRISPR-Cas3-based diagnostics for SARS-CoV-2 and influenza virus. IScience, 2022, 25, 103830.	4.1	25
38	Scavenger Receptor B2 as a Receptor for Hand, Foot, and Mouth Disease and Severe Neurological Diseases. Frontiers in Microbiology, 2012, 3, 32.	3.5	24
39	Role of the GTPase Rab1b in <i>Ebolavirus</i> Particle Formation. Journal of Virology, 2010, 84, 4816-4820.	3.4	23
40	Identification of novel amino acid residues of influenza virus PA-X that are important for PA-X shutoff activity by using yeast. Virology, 2018, 516, 71-75.	2.4	23
41	Diversity of antigenic mutants of influenza A(H1N1)pdm09 virus escaped from human monoclonal antibodies. Scientific Reports, 2017, 7, 17735.	3.3	21
42	Characterization of the SARS-CoV-2 B.1.621 (Mu) variant. Science Translational Medicine, 2022, 14, eabm4908.	12.4	21
43	Therapeutic efficacy of monoclonal antibodies and antivirals against SARS-CoV-2 Omicron BA.1 in Syrian hamsters. Nature Microbiology, 2022, 7, 1252-1258.	13.3	20
44	Identification of Amino Acids in Marburg Virus VP40 That Are Important for Virus-Like Particle Budding. Journal of Infectious Diseases, 2011, 204, S871-S877.	4.0	19
45	A Novel Functional Site in the PB2 Subunit of Influenza A Virus Essential for Acetyl-CoA Interaction, RNA Polymerase Activity, and Viral Replication. Journal of Biological Chemistry, 2014, 289, 24980-24994.	3.4	19
46	Risk assessment of recent Egyptian H5N1 influenza viruses. Scientific Reports, 2016, 6, 38388.	3.3	19
47	Antibody-free digital influenza virus counting based on neuraminidase activity. Scientific Reports, 2019, 9, 1067.	3.3	19
48	Genetic and antigenic characterisation of influenza A(H3N2) viruses isolated in Yokohama during the 2016/17 and 2017/18 influenza seasons. Eurosurveillance, 2019, 24, .	7.0	18
49	The Microminipig as an Animal Model for Influenza A Virus Infection. Journal of Virology, 2017, 91, .	3.4	17
50	Differences in the ease with which mutant viruses escape from human monoclonal antibodies against the HA stem of influenza A virus. Journal of Clinical Virology, 2018, 108, 105-111.	3.1	17
51	Emergence of Oseltamivir-Resistant H7N9 Influenza Viruses in Immunosuppressed Cynomolgus Macaques. Journal of Infectious Diseases, 2017, 216, 582-593.	4.0	16
52	Reactivity and sensitivity of commercially available influenza rapid diagnostic tests in Japan. Scientific Reports, 2017, 7, 14483.	3.3	15
53	The host protein CLUH participates in the subnuclear transport of influenza virus ribonucleoprotein complexes. Nature Microbiology, 2016, 1, 16062.	13.3	14
54	Identification of Amino Acid Residues in Influenza A Virus PA-X That Contribute to Enhanced Shutoff Activity. Frontiers in Microbiology, 2019, 10, 432.	3.5	13

#	Article	IF	CITATIONS
55	Human protective monoclonal antibodies against the HA stem of group 2 HAs derived from an H3N2 virus-infected human. Journal of Infection, 2018, 76, 177-185.	3.3	11
56	Antigenic differences between equine influenza virus vaccine strains and Florida sublineage clade 1 strains isolated in Europe in 2019. Veterinary Journal, 2021, 272, 105674.	1.7	11
57	G Protein Pathway Suppressor 1 Promotes Influenza Virus Polymerase Activity by Activating the NF-κB Signaling Pathway. MBio, 2019, 10, .	4.1	11
58	A 265-Nanometer High-Power Deep-UV Light-Emitting Diode Rapidly Inactivates SARS-CoV-2 Aerosols. MSphere, 2022, 7, e0094121.	2.9	11
59	Strain-Specific Contribution of Eukaryotic Elongation Factor 1 Gamma to the Translation of Influenza A Virus Proteins. Frontiers in Microbiology, 2018, 9, 1446.	3. 5	10
60	A single amino acid change in hemagglutinin reduces the cross-reactivity of antiserum against an equine influenza vaccine strain. Archives of Virology, 2019, 164, 2355-2358.	2.1	9
61	Baloxavir Marboxil Treatment of Nude Mice Infected With Influenza A Virus. Journal of Infectious Diseases, 2020, 221, 1699-1702.	4.0	9
62	Isolation and Characterization of Human Monoclonal Antibodies That Recognize the Influenza A(H1N1)pdm09 Virus Hemagglutinin Receptor-Binding Site and Rarely Yield Escape Mutant Viruses. Frontiers in Microbiology, 2018, 9, 2660.	3.5	8
63	Development of an Influenza Rapid Diagnostic Kit Specific for the H7 Subtype. Frontiers in Microbiology, 2018, 9, 1346.	3.5	8
64	Characterization of Mouse Monoclonal Antibodies Against the HA of A(H7N9) Influenza Virus. Viruses, 2019, 11, 149.	3.3	8
65	Pathogenesis of Influenza A(H7N9) Virus in Aged Nonhuman Primates. Journal of Infectious Diseases, 2020, 222, 1155-1164.	4.0	8
66	Triple combination therapy of favipiravir plus two monoclonal antibodies eradicates influenza virus from nude mice. Communications Biology, 2020, 3, 219.	4.4	8
67	Comparative Sensitivity of Rapid Antigen Tests for the Delta Variant (B.1.617.2) of SARS-CoV-2. Viruses, 2021, 13, 2183.	3.3	8
68	Non-propagative human parainfluenza virus type 2 nasal vaccine robustly protects the upper and lower airways against SARS-CoV-2. IScience, 2021, , 103379.	4.1	8
69	Ebolavirus's Foibles. Cell, 2017, 169, 773-775.	28.9	7
70	Treatment of Highly Pathogenic H7N9 Virus-Infected Mice with Baloxavir Marboxil. Viruses, 2019, 11, 1066.	3.3	6
71	Characterization of H7N9 avian influenza viruses isolated from duck meat products. Transboundary and Emerging Diseases, 2020, 67, 792-798.	3.0	6
72	Sensitivity of Commercially Available Influenza Rapid Diagnostic Tests in the 2018–2019 Influenza Season. Frontiers in Microbiology, 2019, 10, 2342.	3.5	5

#	Article	IF	CITATIONS
73	Evaluation of seasonal influenza vaccines for H1N1pdm09 and type B viruses based on a replication-incompetent PB2-KO virus. Vaccine, 2017, 35, 1892-1897.	3.8	3
74	Antigenic Change in Human Influenza A(H2N2) Viruses Detected by Using Human Plasma from Aged and Younger Adult Individuals. Viruses, 2019, 11, 978.	3.3	3
75	Identification of Novel Adjuvants for Ebola Virus-Like Particle Vaccine. Vaccines, 2020, 8, 215.	4.4	3
76	Evaluation of the fusion partner cell line SPYMEG for obtaining human monoclonal antibodies against influenza B virus. Journal of Veterinary Medical Science, 2018, 80, 1020-1024.	0.9	2
77	Emergence of SARS-CoV-2 and its outlook. Global Health & Medicine, 2020, 2, 1-2.	1.4	2
78	Growth properties and immunogenicity of a virus generated by reverse genetics for an inactivated equine influenza vaccine. Equine Veterinary Journal, 2022, 54, 139-144.	1.7	2
79	Anti-SARS CoV-2 lgG in COVID-19 Patients with Hematological Diseases: A Single-center, Retrospective Study in Japan. Internal Medicine, 2022, 61, 1681-1686.	0.7	2
80	A Novel Method to Reduce ELISA Serial Dilution Assay Workload Applied to SARS-CoV-2 and Seasonal HCoVs. Viruses, 2022, 14, 562.	3.3	2
81	Subclade 2.2.1-Specific Human Monoclonal Antibodies That Recognize an Epitope in Antigenic Site A of Influenza A(H5) Virus HA Detected between 2015 and 2018. Viruses, 2019, 11, 321.	3.3	1
82	Antibody Responses to a Reverse Genetics-Derived Bivalent Inactivated Equine Influenza Vaccine in Thoroughbred Horses. Journal of Equine Veterinary Science, 2022, 109, 103860.	0.9	1
83	Host protein mimics viral protein to hinder infection by Ebola virus. Nature, 2019, 566, 190-191.	27.8	0
84	Uncovering the Anti-Ebola Repertome. Cell Host and Microbe, 2020, 27, 163-165.	11.0	0
85	Chimeric hPIV2/Corona-Spike Nasal Vaccine Robustly Protects the Upper and Lower Airways Against SARS-CoV-2. SSRN Electronic Journal, 0, , .	0.4	0
86	OUP accepted manuscript. Journal of Infectious Diseases, 2022, , .	4.0	0