Jiguang Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1325718/publications.pdf Version: 2024-02-01

LICHANC DENC

#	Article	IF	CITATIONS
1	Manganese Oxides with Rod-, Wire-, Tube-, and Flower-Like Morphologies: Highly Effective Catalysts for the Removal of Toluene. Environmental Science & Technology, 2012, 46, 4034-4041.	10.0	671
2	Mesoporous Co3O4-supported gold nanocatalysts: Highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene. Journal of Catalysis, 2014, 309, 408-418.	6.2	320
3	Au–Pd/3DOM Co 3 O 4 : Highly active and stable nanocatalysts for toluene oxidation. Journal of Catalysis, 2015, 322, 38-48.	6.2	270
4	Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation. Chemical Engineering Journal, 2019, 356, 393-399.	12.7	255
5	Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. Journal of Catalysis, 2012, 287, 149-160.	6.2	230
6	Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane. Journal of Catalysis, 2013, 307, 327-339.	6.2	206
7	Fe2O3/3DOM BiVO4: High-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol. Applied Catalysis B: Environmental, 2017, 202, 569-579.	20.2	175
8	Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: Highly active catalysts for benzene combustion. Applied Catalysis B: Environmental, 2019, 244, 650-659.	20.2	159
9	Porous olive-like BiVO4: Alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol. Applied Catalysis B: Environmental, 2011, 105, 326-334.	20.2	158
10	High Performance Au–Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovskite Catalyst for Methane Combustion. ACS Catalysis, 2016, 6, 6935-6947.	11.2	158
11	Porous Co3O4 nanowires and nanorods: Highly active catalysts for the combustion of toluene. Applied Catalysis A: General, 2013, 450, 42-49.	4.3	156
12	Au/3DOM La0.6Sr0.4MnO3: Highly active nanocatalysts for the oxidation of carbon monoxide and toluene. Journal of Catalysis, 2013, 305, 146-153.	6.2	146
13	Nanosized perovskite-type oxides La1â^'xSrxMO3â^´Î´ (M=Co, Mn; x=0, 0.4) for the catalytic removal of ethylacetate. Catalysis Today, 2007, 126, 420-429.	4.4	143
14	Enhanced photocatalytic Cr(VI) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions. Chinese Journal of Catalysis, 2019, 40, 70-79.	14.0	136
15	Rod-, flower-, and dumbbell-like MnO2: Highly active catalysts for the combustion of toluene. Applied Catalysis A: General, 2012, 433-434, 206-213.	4.3	133
16	Au/3DOM Co3O4: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. Nanoscale, 2013, 5, 11207.	5.6	133
17	Three-dimensionally ordered macroporous CeO2-supported Pd@Co nanoparticles: Highly active catalysts for methane oxidation. Journal of Catalysis, 2016, 342, 17-26.	6.2	131
18	In situ poly(methyl methacrylate)-templating generation and excellent catalytic performance of MnOx/3DOM LaMnO3 for the combustion of toluene and methanol. Applied Catalysis B: Environmental, 2013, 140-141, 493-505.	20.2	130

#	Article	IF	CITATIONS
19	Three-dimensionally ordered mesoporous Co3O4-supported Au–Pd alloy nanoparticles: High-performance catalysts for methane combustion. Journal of Catalysis, 2015, 332, 13-24.	6.2	129
20	Effect of transition metal doping on the catalytic performance of Au–Pd/3DOM Mn2O3 for the oxidation of methane and o-xylene. Applied Catalysis B: Environmental, 2017, 206, 221-232.	20.2	129
21	Size effect, mutual inhibition and oxidation mechanism of the catalytic removal of a toluene and acetone mixture over TiO2 nanosheet-supported Pt nanocatalysts. Applied Catalysis B: Environmental, 2020, 274, 118963.	20.2	125
22	Controlled Generation of Uniform Spherical LaMnO ₃ , LaCoO ₃ , Mn ₂ O ₃ , and Co ₃ O ₄ Nanoparticles and Their High Catalytic Performance for Carbon Monoxide and Toluene Oxidation. Inorganic Chemistry, 2013, 52, 8665-8676.	4.0	124
23	Ultralow Loading of Silver Nanoparticles on Mn ₂ O ₃ Nanowires Derived with Molten Salts: A High-Efficiency Catalyst for the Oxidative Removal of Toluene. Environmental Science & Technology, 2015, 49, 11089-11095.	10.0	123
24	Fabrication and high photocatalytic performance of noble metal nanoparticles supported on 3DOM InVO4–BiVO4 for the visible-light-driven degradation of rhodamine B and methylene blue. Applied Catalysis B: Environmental, 2015, 165, 285-295.	20.2	121
25	Co–Pd/BiVO4: High-performance photocatalysts for the degradation of phenol under visible light irradiation. Applied Catalysis B: Environmental, 2018, 224, 350-359.	20.2	116
26	Au/3DOM LaCoO3: High-performance catalysts for the oxidation of carbon monoxide and toluene. Chemical Engineering Journal, 2013, 228, 965-975.	12.7	114
27	Strontium-Doped Lanthanum Cobaltite and Manganite: Highly Active Catalysts for Toluene Complete Oxidation. Industrial & Engineering Chemistry Research, 2008, 47, 8175-8183.	3.7	110
28	Ultrasound-Assisted Nanocasting Fabrication of Ordered Mesoporous MnO ₂ and Co ₃ O ₄ with High Surface Areas and Polycrystalline Walls. Journal of Physical Chemistry C, 2010, 114, 2694-2700.	3.1	108
29	Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol. Applied Catalysis B: Environmental, 2010, 100, 229-237.	20.2	106
30	Hydrothermal Fabrication and Catalytic Properties of La _{1-<i>x</i>} Sr _{<i>x</i>} M _{1-<i>y</i>} Fe _{<i>y</i>} O ₃ (M = Mn, Co) That Are Highly Active for the Removal of Toluene. Environmental Science & amp; Technology, 2010, 44, 2618-2623.	10.0	105
31	Partially embedding Pt nanoparticles in the skeleton of 3DOM Mn2O3: An effective strategy for enhancing catalytic stability in toluene combustion. Applied Catalysis B: Environmental, 2019, 256, 117814.	20.2	104
32	Mesoporous Chromia with Ordered Three-Dimensional Structures for the Complete Oxidation of Toluene and Ethyl Acetate. Environmental Science & Technology, 2009, 43, 8355-8360.	10.0	103
33	Porous NiO nanoflowers and nanourchins: Highly active catalysts for toluene combustion. Catalysis Communications, 2012, 27, 148-153.	3.3	102
34	Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chinese Journal of Catalysis, 2016, 37, 1193-1205.	14.0	101
35	Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation. Nanoscale, 2012, 4, 2317.	5.6	95
36	3DOM BiVO 4 supported silver bromide and noble metals: High-performance photocatalysts for the visible-light-driven degradation of 4-chlorophenol. Applied Catalysis B: Environmental, 2015, 168-169, 274-282.	20.2	95

#	Article	IF	CITATIONS
37	Insights into the active sites of ordered mesoporous cobalt oxide catalysts for the total oxidation of o-xylene. Journal of Catalysis, 2017, 352, 282-292.	6.2	95
38	Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation. Applied Catalysis B: Environmental, 2018, 220, 78-87.	20.2	95
39	Excellent catalytic performance, thermal stability, and water resistance of 3DOM Mn2O3-supported Au–Pd alloy nanoparticles for the complete oxidation of toluene. Applied Catalysis A: General, 2015, 507, 82-90.	4.3	90
40	Three-Dimensionally Ordered Macroporous La _{0.6} Sr _{0.4} MnO ₃ Supported Ag Nanoparticles for the Combustion of Methane. Journal of Physical Chemistry C, 2014, 118, 14913-14928.	3.1	89
41	High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. Journal of Hazardous Materials, 2012, 217-218, 92-99.	12.4	88
42	Lysine-aided PMMA-templating preparation and high performance of three-dimensionally ordered macroporous LaMnO3 with mesoporous walls for the catalytic combustion of toluene. Applied Catalysis B: Environmental, 2012, 119-120, 20-31.	20.2	86
43	Hydrothermal fabrication and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/or porous structures for Methyl Orange degradation. Journal of Environmental Sciences, 2012, 24, 449-457.	6.1	85
44	The microemulsion preparation and high catalytic performance of mesoporous NiO nanorods and nanocubes for toluene combustion. Chemical Engineering Journal, 2013, 219, 200-208.	12.7	85
45	Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst. Journal of Hazardous Materials, 2020, 392, 122258.	12.4	85
46	Morphologically Controlled Synthesis of Porous Spherical and Cubic LaMnO ₃ with High Activity for the Catalytic Removal of Toluene. ACS Applied Materials & Interfaces, 2014, 6, 17394-17401.	8.0	84
47	Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene. Journal of Hazardous Materials, 2014, 279, 392-401.	12.4	84
48	Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2–Al2O3 for toluene oxidation. Journal of Molecular Catalysis A, 2016, 414, 9-18.	4.8	83
49	Alloying of gold with palladium: An effective strategy to improve catalytic stability and chlorine-tolerance of the 3DOM CeO2-supported catalysts in trichloroethylene combustion. Applied Catalysis B: Environmental, 2019, 257, 117879.	20.2	83
50	Highly efficient and enhanced sulfur resistance supported bimetallic single-atom palladium–cobalt catalysts for benzene oxidation. Applied Catalysis B: Environmental, 2021, 285, 119844.	20.2	83
51	Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. Journal of Hazardous Materials, 2011, 186, 84-91.	12.4	80
52	Influence of group VIB metals on activity of the Ni/MgO catalysts for methane decomposition. Applied Catalysis B: Environmental, 2019, 248, 515-525.	20.2	79
53	Emissions, measurement, and control of odor in livestock farms: A review. Science of the Total Environment, 2021, 776, 145735.	8.0	79
54	Solvo- or hydrothermal fabrication and excellent carbon dioxide adsorption behaviors of magnesium oxides with multiple morphologies and porous structures. Materials Chemistry and Physics, 2011, 128, 348-356.	4.0	78

#	Article	IF	CITATIONS
55	In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts: High activity for the complete oxidation of toluene and ethyl acetate. Applied Catalysis A: General, 2009, 352, 43-49.	4.3	77
56	P123-PMMA Dual-Templating Generation and Unique Physicochemical Properties of Three-Dimensionally Ordered Macroporous Iron Oxides with Nanovoids in the Crystalline Walls. Inorganic Chemistry, 2011, 50, 2534-2544.	4.0	77
57	PMMA-templating generation and high catalytic performance of chain-like ordered macroporous LaMnO3 supported gold nanocatalysts for the oxidation of carbon monoxide and toluene. Applied Catalysis B: Environmental, 2013, 140-141, 317-326.	20.2	74
58	Three-dimensionally ordered macroporous InVO4: Fabrication and excellent visible-light-driven photocatalytic performance for methylene blue degradation. Chemical Engineering Journal, 2013, 226, 87-94.	12.7	73
59	Hydrothermally fabricated single-crystalline strontium-substituted lanthanum manganite microcubes for the catalytic combustion of toluene. Journal of Molecular Catalysis A, 2009, 299, 60-67.	4.8	72
60	Mesoporous Cr2O3-supported Au–Pd nanoparticles: High-performance catalysts for the oxidation of toluene. Microporous and Mesoporous Materials, 2016, 224, 311-322.	4.4	70
61	Concurrent catalytic removal of typical volatile organic compound mixtures over Au-Pd/α-MnO 2 nanotubes. Journal of Environmental Sciences, 2018, 64, 276-288.	6.1	70
62	Band alignment of homojunction by anchoring CN quantum dots on g-C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution. Applied Catalysis B: Environmental, 2022, 300, 120736.	20.2	70
63	In situ PMMA-templating preparation and excellent catalytic performance of Co3O4/3DOM La0.6Sr0.4CoO3 for toluene combustion. Applied Catalysis A: General, 2013, 458, 11-20.	4.3	67
64	P123-Assisted Hydrothermal Synthesis and Characterization of Rectangular Parallelepiped and Hexagonal Prism Single-Crystalline MgO with Three-Dimensional Wormholelike Mesopores. Inorganic Chemistry, 2008, 47, 4015-4022.	4.0	65
65	Supported ultralow loading Pt catalysts with high H2O-, CO2-, and SO2-resistance for acetone removal. Applied Catalysis A: General, 2019, 579, 106-115.	4.3	65
66	Electronically Engineering Water Resistance in Methane Combustion with an Atomically Dispersed Tungsten on PdO Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	13.8	63
67	Insights into the active sites of chlorine-resistant Pt-based bimetallic catalysts for benzene oxidation. Applied Catalysis B: Environmental, 2020, 279, 119372.	20.2	62
68	Three-dimensionally ordered macroporous La0.6Sr0.4FeO3â~îî: High-efficiency catalysts for the oxidative removal of toluene. Microporous and Mesoporous Materials, 2012, 163, 131-139.	4.4	61
69	Mesoporous Ni/MeO (Me =â€~Al, Mg, Ti, and Si): Highly efficient catalysts in the decomposition of methane for hydrogen production. Applied Surface Science, 2019, 478, 581-593.	6.1	60
70	Photocatalytic Cr(VI) reduction and organic-pollutant degradation in a stable 2D coordination polymer. Chinese Journal of Catalysis, 2017, 38, 2141-2149.	14.0	59
71	Coupled Palladium–Tungsten Bimetallic Nanosheets/TiO ₂ Hybrids with Enhanced Catalytic Activity and Stability for the Oxidative Removal of Benzene. Environmental Science & Technology, 2019, 53, 5926-5935.	10.0	59
72	Controlled Synthesis, Characterization, and Morphology-Dependent Reducibility of Ceriaâ^'Zirconiaâ 'Yttria Solid Solutions with Nanorod-like, Microspherical, Microbowknot-like, and Micro-octahedral Shapes. Inorganic Chemistry, 2009, 48, 2181-2192.	4.0	58

#	Article	IF	CITATIONS
73	Morphology-Dependent Photocatalytic Performance of Monoclinic BiVO4 for Methyl Orange Degradation under Visible-Light Irradiation. Chinese Journal of Catalysis, 2011, 32, 939-949.	14.0	57
74	Catalytic stability enhancement for pollutant removal via balancing lattice oxygen mobility and VOCs adsorption. Journal of Hazardous Materials, 2022, 424, 127337.	12.4	57
75	Surfactant-assisted solvo- or hydrothermal fabrication and characterization of high-surface-area porous calcium carbonate with multiple morphologies. Microporous and Mesoporous Materials, 2011, 138, 191-199.	4.4	56
76	Porous F-doped BiVO4: Synthesis and enhanced photocatalytic performance for the degradation of phenol under visible-light illumination. Solid State Sciences, 2013, 17, 21-27.	3.2	56
77	Preparation, characterization, and catalytic activity of chromia supported on SBA-15 for the oxidative dehydrogenation of isobutane. Applied Catalysis A: General, 2009, 355, 192-201.	4.3	55
78	Three-dimensionally ordered macroporous SrFeO3â^î^ with high surface area: Active catalysts for the complete oxidation of toluene. Applied Catalysis A: General, 2012, 425-426, 153-160.	4.3	55
79	Promotional roles of second metals in catalyzing methane decomposition over the Ni-based catalysts for hydrogen production: A critical review. International Journal of Hydrogen Energy, 2021, 46, 20435-20480.	7.1	54
80	Simulated solar light driven photothermal catalytic purification of toluene over iron oxide supported single atom Pt catalyst. Applied Catalysis B: Environmental, 2021, 298, 120612.	20.2	54
81	Efficient Removal of Methane over Cobalt-Monoxide-Doped AuPd Nanocatalysts. Environmental Science & Technology, 2017, 51, 2271-2279.	10.0	53
82	Support promotion effect on the SO2 and K+ co-poisoning resistance of MnO2/TiO2 for NH3-SCR of NO. Journal of Hazardous Materials, 2021, 416, 126117.	12.4	53
83	Photothermal Synergistic Effect of Pt ₁ /CuO-CeO ₂ Single-Atom Catalysts Significantly Improving Toluene Removal. Environmental Science & Technology, 2022, 56, 8722-8732.	10.0	52
84	Porous Cubeâ€Aggregated Co ₃ O ₄ Microsphereâ€Supported Gold Nanoparticles for Oxidation of Carbon Monoxide and Toluene. ChemSusChem, 2014, 7, 1745-1754.	6.8	51
85	Dual-templating synthesis of three-dimensionally ordered macroporous La0.6Sr0.4MnO3-supported Ag nanoparticles: controllable alignments and super performance for the catalytic combustion of methane. Chemical Communications, 2013, 49, 10748.	4.1	49
86	Catalytic removal of toluene over three-dimensionally ordered macroporous Eu1–Sr FeO3. Chemical Engineering Journal, 2013, 214, 262-271.	12.7	49
87	Ce _{0.6} Zr _{0.3} Y _{0.1} O ₂ nanorod supported gold and palladium alloy nanoparticles: high-performance catalysts for toluene oxidation. Nanoscale, 2015, 7, 8510-8523.	5.6	49
88	Rare earth oxides and their supported noble metals in application of environmental catalysis. Journal of Rare Earths, 2020, 38, 819-839.	4.8	49
89	Preparation, characterization, and catalytic properties of NdSrCu1â^'xCoxO4â^'δ and Sm1.8Ce0.2Cu1â^'xCoxO4+δ (x=0, 0.2 and 0.4) for methane combustion. Applied Catalysis B: Environmental, 2009, 89, 87-96.	20.2	48
90	Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide. Chinese Journal of Catalysis, 2013, 34, 2223-2229.	14.0	48

#	Article	IF	CITATIONS
91	3DOM InVO4-supported chromia with good performance for the visible-light-driven photodegradation of rhodamine B. Solid State Sciences, 2013, 24, 62-70.	3.2	48
92	Mechanistic insights into toluene degradation under VUV irradiation coupled with photocatalytic oxidation. Journal of Hazardous Materials, 2020, 399, 122967.	12.4	48
93	Copper Single Atom-Triggered Niobia–Ceria Catalyst for Efficient Low-Temperature Reduction of Nitrogen Oxides. ACS Catalysis, 2022, 12, 2441-2453.	11.2	48
94	A comparative study of bulk and 3DOM-structured Co3O4, Eu0.6Sr0.4FeO3, and Co3O4/Eu0.6Sr0.4FeO3: Preparation, characterization, and catalytic activities for toluene combustion. Applied Catalysis A: General, 2012, 447-448, 41-48.	4.3	47
95	Three-dimensionally ordered macroporous Eu0.6Sr0.4FeO3 supported cobalt oxides: Highly active nanocatalysts for the combustion of toluene. Applied Catalysis B: Environmental, 2013, 129, 539-548.	20.2	47
96	Mesoporous CoO-supported palladium nanocatalysts with high performance for <i>o</i> -xylene combustion. Catalysis Science and Technology, 2018, 8, 806-816.	4.1	47
97	Phosphorus vapor assisted preparation of P-doped ultrathin hollow g-C3N4 sphere for efficient solar-to-hydrogen conversion. Applied Catalysis B: Environmental, 2021, 297, 120438.	20.2	47
98	Surfactant-Aided Hydrothermal Synthesis and Carbon Dioxide Adsorption Behavior of Three-Dimensionally Mesoporous Calcium Oxide Single-Crystallites with Tri-, Tetra-, and Hexagonal Morphologies. Journal of Physical Chemistry C, 2008, 112, 19248-19256.	3.1	44
99	Glucose-assisted hydrothermal preparation and catalytic performance of porous LaFeO3 for toluene combustion. Journal of Solid State Chemistry, 2013, 199, 164-170.	2.9	43
100	Enhanced catalytic performance for methane combustion of 3DOM CoFe2O4 by co-loading MnO and Pd–Pt alloy nanoparticles. Applied Surface Science, 2017, 403, 590-600.	6.1	43
101	Three-dimensionally ordered macroporous Pr6O11 and Tb4O7 with mesoporous walls: Preparation, characterization, and catalytic activity for CO oxidation. Catalysis Today, 2015, 245, 28-36.	4.4	42
102	PtRu nanoparticles partially embedded in the 3DOM Ce0.7Zr0.3O2 skeleton: Active and stable catalysts for toluene combustion. Journal of Catalysis, 2020, 385, 274-288.	6.2	42
103	Electronic structure tailoring of Al3+- and Ta5+-doped CeO2 for the synergistic removal of NO and chlorinated organics. Applied Catalysis B: Environmental, 2022, 304, 120939.	20.2	42
104	Mn 3 O 4 -Au/3DOM La 0.6 Sr 0.4 CoO 3 : High-performance catalysts for toluene oxidation. Catalysis Today, 2017, 281, 437-446.	4.4	41
105	PMMA-templating preparation and catalytic properties of high-surface-area three-dimensional macroporous La2CuO4 for methane combustion. Catalysis Today, 2011, 175, 209-215.	4.4	40
106	Effect of sulfur doping on the photocatalytic performance of BiVO4 under visible light illumination. Chinese Journal of Catalysis, 2013, 34, 1617-1626.	14.0	39
107	Surfactant-mediated PMMA-templating fabrication and characterization of three-dimensionally ordered macroporous Eu2O3 and Sm2O3 with mesoporous walls. Materials Chemistry and Physics, 2011, 129, 586-593.	4.0	38
108	Gold Supported on Iron Oxide Nanodisk as Efficient Catalyst for The Removal of Toluene. Industrial & Engineering Chemistry Research, 2014, 53, 3486-3494.	3.7	38

#	Article	IF	CITATIONS
109	Au/MnO /3DOM SiO2: Highly active catalysts for toluene oxidation. Applied Catalysis A: General, 2015, 507, 139-148.	4.3	37
110	Effect of hydrothermal treatment temperature on the catalytic performance of single-crystalline La0.5Sr0.5MnO3â^îl´microcubes for the combustion of toluene. Catalysis Today, 2008, 139, 82-87.	4.4	36
111	Pt/Co3O4/3DOM Al2O3: Highly effective catalysts for toluene combustion. Chinese Journal of Catalysis, 2016, 37, 934-946.	14.0	36
112	Graphitic carbon nitride-supported iron oxides: High-performance photocatalysts for the visible-light-driven degradation of 4-nitrophenol. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 336, 105-114.	3.9	36
113	Three-dimensionally ordered macroporous CoCr 2 O 4 -supported Au–Pd alloy nanoparticles: Highly active catalysts for methane combustion. Catalysis Today, 2017, 281, 467-476.	4.4	36
114	Supported ceria-modified silver catalysts with high activity and stability for toluene removal. Environment International, 2019, 128, 335-342.	10.0	36
115	Au/MnO _{<i>x</i>} /3DOM La _{0.6} Sr _{0.4} MnO ₃ : Highly Active Nanocatalysts for the Complete Oxidation of Toluene. Industrial & Engineering Chemistry Research, 2015, 54, 900-910.	3.7	35
116	Three-dimensionally ordered macroporous Cr2O3â^'CeO2: High-performance catalysts for the oxidative removal of trichloroethylene. Catalysis Today, 2020, 339, 200-209.	4.4	35
117	Activated carbon supported MnO nanoparticles for efficient ozone decomposition at room temperature. Catalysis Today, 2020, 355, 573-579.	4.4	35
118	Effect of support nature on catalytic activity of the bimetallic RuCo nanoparticles for the oxidative removal of 1,2-dichloroethane. Applied Catalysis B: Environmental, 2021, 285, 119804.	20.2	35
119	An isotopic strategy to investigate the role of water vapor in the oxidation of 1,2-dichloroethane over the Ru/WO3 or Ru/TiO2 catalyst. Applied Catalysis B: Environmental, 2022, 305, 121037.	20.2	35
120	Hydrothermal synthesis and catalytic performance of single-crystalline La2â^'xSrxCuO4 for methane oxidation. Catalysis Today, 2010, 153, 143-149.	4.4	34
121	Elemental red phosphorus-based photocatalysts for environmental remediation: A review. Chemosphere, 2021, 274, 129793.	8.2	34
122	Catalytic performance enhancement by alloying Pd with Pt on ordered mesoporous manganese oxide for methane combustion. Chinese Journal of Catalysis, 2017, 38, 92-105.	14.0	33
123	Photocatalytic Cr(VI) elimination over BUC-21/N-K2Ti4O9 composites: Big differences in performance resulting from small differences in composition. Chinese Journal of Catalysis, 2021, 42, 259-270.	14.0	33
124	High Selectivity to HCl for the Catalytic Removal of 1,2-Dichloroethane Over RuP/3DOM WO _{<i>x</i>} : Insights into the Effects of P-Doping and H ₂ O Introduction. Environmental Science & Technology, 2021, 55, 14906-14916.	10.0	33
125	Single-Crystalline La0.6Sr0.4CoO3-δ Nanowires/Nanorods Derived Hydrothermally Without the Use of a Template: Catalysts Highly Active for Toluene Complete Oxidation. Catalysis Letters, 2008, 123, 294-300.	2.6	32
126	A short review of bioaerosol emissions from gas bioreactors: Health threats, influencing factors and control technologies. Chemosphere, 2020, 253, 126737.	8.2	32

#	Article	IF	CITATIONS
127	A Resource utilization method for volatile organic compounds emission from the semiconductor industry: Selective catalytic oxidation of isopropanol to acetone Over Au/α-Fe2O3 nanosheets. Applied Catalysis B: Environmental, 2020, 275, 119011.	20.2	31
128	Catalytic performance of cobalt oxide-supported gold-palladium nanocatalysts for the removal of toluene and o -xylene. Chinese Journal of Catalysis, 2017, 38, 207-216.	14.0	30
129	Intermetallic compound PtMn -derived Ptâ~'MnO supported on mesoporous CeO2: Highly efficient catalysts for the combustion of toluene. Applied Catalysis A: General, 2020, 595, 117509.	4.3	30
130	In situ construction of elemental phosphorus nanorod-modified TiO2 photocatalysts for efficient visible-light-driven H2 generation. Applied Catalysis B: Environmental, 2021, 297, 120412.	20.2	30
131	Selective photocatalytic oxidation of gaseous ammonia at ppb level over Pt and F modified TiO2. Applied Catalysis B: Environmental, 2022, 300, 120688.	20.2	30
132	Synergy in Auâ^'CuO Janus Structure for Catalytic Isopropanol Oxidative Dehydrogenation to Acetone. Angewandte Chemie - International Edition, 2022, 61, .	13.8	30
133	PMMA-templating preparation and catalytic activities of three-dimensional macroporous strontium ferrites with high surface areas for toluene combustion. Catalysis Today, 2013, 201, 40-48.	4.4	29
134	Preparation of three-dimensionally ordered macroporous La0.6Sr0.4Fe0.8Bi0.2O3â~δ and their excellent catalytic performance for the combustion of toluene. Journal of Molecular Catalysis A, 2013, 366, 116-125.	4.8	29
135	Preparation and high catalytic performance of Co3O4–MnO2 for the combustion of o-xylene. Catalysis Today, 2019, 327, 246-253.	4.4	28
136	Highly Active and Stable Palladium Catalysts on Novel Ceria–Alumina Supports for Efficient Oxidation of Carbon Monoxide and Hydrocarbons. Environmental Science & Technology, 2021, 55, 7624-7633.	10.0	28
137	Enhanced visible-light photocatalytic activities of porous olive-shaped sulfur-doped BiVO4-supported cobalt oxides. Solid State Sciences, 2013, 18, 98-104.	3.2	26
138	Catalytic performance and intermediates identification of trichloroethylene deep oxidation over Ru/3DOM SnO2 catalysts. Journal of Catalysis, 2021, 400, 310-324.	6.2	26
139	Porous FeOx/BiVO4–Î′S0.08: Highly efficient photocatalysts for the degradation of Methylene Blue under visible-light illumination. Journal of Environmental Sciences, 2013, 25, 2138-2149.	6.1	25
140	3DOM CeO ₂ -supported Ru _y M (M = Au, Pd, Pt) alloy nanoparticles with improved catalytic activity and chlorine-tolerance in trichloroethylene oxidation. Catalysis Science and Technology, 2020, 10, 3755-3770.	4.1	25
141	Achieving efficient toluene oxidation over metal–organic framework-derived Pt/CeO2-Co3O4 catalyst. Applied Surface Science, 2022, 591, 153225.	6.1	25
142	Carbon Monoxide Oxidation over rGO-Mediated Gold/Cobalt Oxide Catalysts with Strong Metal–Support Interaction. ACS Applied Materials & Interfaces, 2020, 12, 31467-31476.	8.0	24
143	Template-free synthesis of high surface area single-crystalline lanthanum hydroxide nanorods via a low-temperature solution route. Materials Letters, 2009, 63, 632-634.	2.6	23
144	Structure-activity relationship of Pt catalyst on engineered ceria-alumina support for CO oxidation. Journal of Catalysis, 2022, 405, 236-248.	6.2	23

#	Article	IF	CITATIONS
145	Performance enhancement of a biofilter with pH buffering and filter bed supporting material in removal of chlorobenzene. Chemosphere, 2020, 251, 126358.	8.2	22
146	Nanotubular OMS-2 Supported Single-Atom Platinum Catalysts Highly Active for Benzene Oxidation. Journal of Physical Chemistry C, 2021, 125, 17696-17708.	3.1	22
147	AuOx/Ce0.6Zr0.3Y0.1O2 nano-sized catalysts active for the oxidation of methane. Catalysis Today, 2008, 139, 29-36.	4.4	21
148	Highly Active and Stable Pdâ^'GaO _{<i>x</i>} /Al ₂ O ₃ Catalysts Derived from Intermetallic Pd ₅ Ga ₃ Nanocrystals for Methane Combustion. ChemCatChem, 2018, 10, 5637-5648.	3.7	21
149	Facet-Dependent Cobalt Ion Distribution on the Co ₃ O ₄ Nanocatalyst Surface. Journal of Physical Chemistry Letters, 2020, 11, 9913-9919.	4.6	20
150	Au/Ce _{0.6} Zr _{0.3} Y _{0.1} O ₂ Nanorods: Highly Active Catalysts for the Oxidation of Carbon Monoxide and Toluene. Industrial & Engineering Chemistry Research, 2014, 53, 18452-18461.	3.7	19
151	Nanoplate-aggregate Co3O4 microspheres for toluene combustion. Chinese Journal of Catalysis, 2014, 35, 1475-1481.	14.0	19
152	Effect of transition metal oxide doping on catalytic activity of titania for the oxidation of 1,2-dichloroethane. Catalysis Today, 2021, 375, 623-634.	4.4	19
153	Binary Cr–Mo oxide catalysts supported on MgO-coated polyhedral three-dimensional mesoporous SBA-16 for the oxidative dehydrogenation of iso-butane. Applied Catalysis A: General, 2009, 354, 72-81.	4.3	18
154	Mesoporous Pd Pt alloys: High-performance catalysts for methane combustion. Molecular Catalysis, 2017, 442, 191-201.	2.0	18
155	Facilitating Catalytic Purification of Auto-Exhaust Carbon Particles via the Fe ₂ O ₃ {113} Facet-dependent Effect in Pt/Fe ₂ O ₃ Catalysts. Environmental Science & Technology, 2021, 55, 16153-16162.	10.0	18
156	Evaluation of the CO2 tolerant cathode for solid oxide fuel cells: Praseodymium oxysulfates/Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Applied Surface Science, 2019, 472, 10-15.	6.1	17
157	Phosphorus-containing g-C3N4 photocatalysts for hydrogen evolution: A review. International Journal of Hydrogen Energy, 2022, 47, 42136-42149.	7.1	17
158	Engineering Platinum Catalysts <i>via</i> a Site-Isolation Strategy with Enhanced Chlorine Resistance for the Elimination of Multicomponent VOCs. Environmental Science & Technology, 2022, 56, 9672-9682.	10.0	17
159	Pt Co/meso-MnO : Highly efficient catalysts for low-temperature methanol combustion. Catalysis Today, 2019, 332, 168-176.	4.4	16
160	Comparison of separated and combined photodegradation and biofiltration technology for the treatment of volatile organic compounds: A critical review. Critical Reviews in Environmental Science and Technology, 2022, 52, 1325-1355.	12.8	16
161	An investigation on catalytic performance and reaction mechanism of RuMn/meso-TiO2 derived from RuMn intermetallic compounds for methyl ethyl ketone oxidation. Applied Catalysis B: Environmental, 2021, 296, 120361.	20.2	16
162	Catalytic toluene oxidation over the three-dimensionally ordered macroporous EuFeO3 catalysts fabricated by the sucrose-assisted polymethyl methacrylate-templating method. Solid State Sciences, 2014, 27, 36-42.	3.2	15

#	Article	IF	CITATIONS
163	Three-dimensionally ordered macroporous LaMnAl11019-supported Pd nanocatalysts highly active for methane combustion. Molecular Catalysis, 2017, 439, 200-210.	2.0	15
164	In situ molten salt derived iron oxide supported platinum catalyst with high catalytic performance for o-xylene elimination. Catalysis Today, 2020, 351, 30-36.	4.4	15
165	Hetero-phase dendritic elemental phosphorus for visible light photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2022, 312, 121428.	20.2	15
166	CrOx/nano-Ce0.60Zr0.35Y0.05O2 catalysts that are highly selective for the oxidative dehydrogenation of isobutane to isobutene. Applied Catalysis A: General, 2010, 375, 272-278.	4.3	14
167	Dual-Templating Preparation and Enhanced Low-Temperature Reducibility of Three-Dimensionally Ordered Macroporous Ceria with Mesoporous Walls. Chinese Journal of Catalysis, 2011, 32, 842-852.	14.0	14
168	One-pot hydrothermal preparation and catalytic performance of porous strontium ferrite hollow spheres for the combustion of toluene. Journal of Molecular Catalysis A, 2013, 370, 189-196.	4.8	14
169	Au â^' Pd/mesoporous Fe2O3: Highly active photocatalysts for the visible-light-driven degradation of acetone. Journal of Environmental Sciences, 2018, 70, 74-86.	6.1	14
170	In-situ reduction-derived Pd/3DOM La0.6Sr0.4MnO3: Good catalytic stability in methane combustion. Applied Catalysis A: General, 2018, 568, 202-212.	4.3	14
171	Preparation, characterization, and catalytic performance of PdPt/3DOM LaMnAl11O19 for the combustion of methane. Applied Catalysis A: General, 2018, 562, 284-293.	4.3	14
172	A Study on the Relationship Between Low-Temperature Reducibility and Catalytic Performance of Single-Crystalline La0.6Sr0.4MnO3+δMicrocubes for Toluene Combustion. Catalysis Letters, 2009, 130, 622-629.	2.6	13
173	3DOM LaMnAl11O19-supported AuPd alloy nanoparticles: Highly active catalysts for methane combustion in a continuous-flow microreactor. Catalysis Today, 2018, 308, 71-80.	4.4	13
174	AuPd/3DOM TiO2 Catalysts: Good Activity and Stability for the Oxidation of Trichloroethylene. Catalysts, 2018, 8, 666.	3.5	13
175	AgAuPd/meso-Co3O4: High-performance catalysts for methanol oxidation. Chinese Journal of Catalysis, 2019, 40, 837-848.	14.0	13
176	Single-crystalline mesoporous CaO supported Cr–V binary oxides: Highly active catalysts for the oxidative dehydrogenation of isobutane. Catalysis Today, 2011, 164, 347-352.	4.4	12
177	Microfluidics revealing formation mechanism of intermetallic nanocrystals. Nano Energy, 2020, 70, 104565.	16.0	12
178	AuPd/Co3O4/3DOM MnCo2O4: Highly active catalysts for methane combustion. Catalysis Today, 2021, 376, 134-143.	4.4	12
179	Surfactant-aided hydrothermal preparation of La2-xSrxCuO4 single crystallites and their catalytic performance on methane combustion. Journal of Natural Gas Chemistry, 2012, 21, 69-75.	1.8	11
180	Pd/meso-CoO derived from in situ reduction of the one-step synthesized Pd/meso-Co3O4: high-performance catalysts for benzene combustion. New Journal of Chemistry, 2019, 43, 12358-12368.	2.8	11

#	Article	IF	CITATIONS
181	Mesoporous cobalt monoxide-supported platinum nanoparticles: Superior catalysts for the oxidative removal of benzene. Journal of Environmental Sciences, 2020, 90, 170-179.	6.1	11
182	Experimental and density functional theory investigations on the oxidation of typical aromatics over the intermetallic compounds-derived AuMn/meso-Fe2O3 catalysts. Journal of Catalysis, 2022, 405, 273-287.	6.2	11
183	Comprehending adsorption of methylethylketone and toluene and microwave regeneration effectiveness for beaded activated carbon derived from recycled waste bamboo tar. Journal of the Air and Waste Management Association, 2020, 70, 616-628.	1.9	10
184	Toluene Oxidation over the M–Al (M = Ce, La, Co, Ce–La, and Ce–Co) Catalysts Derived from the Modified "One-Pot―Evaporation-Induced Self-Assembly Method: Effects of Microwave or Ultrasound Irradiation and Noble-Metal Loading on Catalytic Activity and Stability. Industrial & Engineering Chemistry Research, 2020, 59, 5624-5635.	3.7	10
185	N-doped carbon-modified palladium catalysts with superior water resistant performance for the oxidative removal of toxic aromatics. Journal of Hazardous Materials, 2022, 437, 129358.	12.4	10
186	Ru Nanoparticles Supported on Oxygenâ€Deficient 3DOM BiVO 4 : Highâ€Performance Catalysts for the Visibleâ€Lightâ€Driven Selective Oxidation of Benzyl Alcohol. ChemCatChem, 2019, 11, 6398-6407.	3.7	9
187	Influence of preparation method on catalytic performance of three-dimensionally ordered macroporous NiO–CuO for CO oxidation. Journal of Solid State Chemistry, 2021, 297, 122091.	2.9	9
188	Electronically Engineering Water Resistance in Methane Combustion with an Atomically Dispersed Tungsten on PdO Catalyst. Angewandte Chemie, 2022, 134, .	2.0	9
189	Hydrothermal Fabrication and Catalytic Properties of YBa2Cu3O7 Single Crystallites for Methane Combustion. Catalysis Letters, 2010, 135, 126-134.	2.6	8
190	A comparative investigation of NdSrCu1â^'xCoxO4â^'δ and Sm1.8Ce0.2Cu1â^'xCoxO4â^'δ (x: 0–0.4) for NO decomposition. Journal of Environmental Sciences, 2010, 22, 448-453.	6.1	8
191	Preparation and catalytic performance of Fe-SBA-15 and FeO x /SBA-15 for toluene combustion. Science Bulletin, 2014, 59, 3993-4002.	1.7	8
192	Mercury vapor adsorption and sustainable recovery using novel electrothermal swing system with gold-electrodeposited activated carbon fiber cloth. Journal of Hazardous Materials, 2021, 410, 124586.	12.4	8
193	Catalytic combustion of methane conducted on La–B–O–C (B Co, Mn, Fe) composites: The effects of B-sites cation properties. International Journal of Hydrogen Energy, 2021, 46, 23954-23961.	7.1	8
194	Catalytic performance and SO2 resistance of zirconia-supported platinum-palladium bimetallic nanoparticles for methane combustion. Catalysis Today, 2022, 402, 138-148.	4.4	8
195	Amino acid-deep eutectic solvents/LaCoO3 mutualism system:Forming La-Co-C-O hybrid for low temperature methane catalytic oxidation. Fuel, 2022, 316, 123358.	6.4	7
196	Pd/silicalite-1: An highly active catalyst for the oxidative removal of toluene. Journal of Environmental Sciences, 2022, 116, 209-219.	6.1	7
197	Mesoporous Na _{<i>x</i>} MnO _{<i>y</i>} -Supported Platinum–Cobalt Bimetallic Single-Atom Catalysts with Good Sulfur Dioxide Tolerance in Propane Oxidation. ACS Sustainable Chemistry and Engineering, 2022, 10, 8326-8341.	6.7	7
198	The Binding Strength of Reactive H*: A Neglected Key Factor in Rh-Catalyzed Environmental Hydrodefluorination Reaction. ACS ES&T Engineering, 2021, 1, 1036-1045.	7.6	6

#	Article	IF	CITATIONS
199	Synergy in Auâ^'CuO Janus Structure for Catalytic Isopropanol Oxidative Dehydrogenation to Acetone. Angewandte Chemie, 2022, 134, .	2.0	5
200	Component regulation in novel La-Co-O-C composite catalyst for boosted redox reactions and enhanced thermal stability in methane combustion. Journal of Environmental Sciences, 2023, 126, 459-469.	6.1	5
201	Catalytic Removal of Volatile Organic Compounds over Porous Catalysts. The Global Environmental Engineers, 2015, 2, 1-14.	0.3	4
202	Combustion of acetylene over the mesoporous CeO2-supported IrFe bimetallic catalysts. Catalysis Today, 2021, 382, 22-33.	4.4	3
203	Synthesis and characterization of wormhole-like mesoporous Ce0.6Zr0.35Y0.05O2 solid solutions. Science Bulletin, 2007, 52, 175-180.	1.7	2
204	Synthesis, Characterization, and Catalytic Properties of MnOx/SBA-16 for Toluene Oxidation. , 2015, , .		2
205	Photocatalytic Removal of Organics over BiVO4-Based Photocatalysts. , 0, , .		2
206	Bias polarization study of steam electrolysis by composite oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-Î′ BaCe0.4Zr0.4Y0.2O3-Î′. Applied Surface Science, 2017, 424, 82-86.	6.1	2
207	AuPt/3DOM CoCr2O4: Highly Active Catalysts for the Combustion of Methane. The Global Environmental Engineers, 2017, 4, 24-36.	0.3	2
208	Oxidative Removal of Volatile Organic Compounds over the Supported Bimetallic Catalysts. The Global Environmental Engineers, 0, 7, 1-27.	0.3	2
209	Enhanced Performance of Supported Ternary Metal Catalysts for the Oxidation of Toluene in the Presence of Trichloroethylene. Catalysts, 2022, 12, 541.	3.5	2
210	Poly[[dodecaaquabis(μ3-pyridine-2,6-dicarboxylato)tetrakis(μ2-pyridine-2,6-dicarboxylato)tricalciumdieuropiur 10.5-hydrate]. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m685-m686.	n(III)] 0.2	1
211	AuRu/meso-Mn2O3: A Highly Active and Stable Catalyst for Methane Combustion. IOP Conference Series: Materials Science and Engineering, 2018, 359, 012022.	0.6	1
212	Diaquabis(4-hydroxy-5-nitropyridine-2-carboxylato-κ2N1,O2)copper(II). Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m46-m46.	0.2	0
213	PtxNi/meso-Al2O3 (x = 0.60–2.07): High- Performance Catalysts for the Hydrogenation of N-Butanal at Low Temperatures. , 2017, , 201-212.		0
214	Fabrication and Catalytic Performance of Au/3DOM Fe2O3 Catalysts for the Oxidative Removal of Toluene. , 2016, , .		0