Martin Stevens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1325705/publications.pdf

Version: 2024-02-01

		46918	4	46693
150	9,678	47		89
papers	citations	h-index		g-index
157	157	157		5270
137	137	137		3270
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Commercial Harvesting Has Driven the Evolution of Camouflage in an Alpine Plant. Current Biology, 2021, 31, 446-449.e4.	1.8	17
2	Variable crab camouflage patterns defeat search image formation. Communications Biology, 2021, 4, 287.	2.0	14
3	Hosts elevate either within-clutch consistency or between-clutch distinctiveness of egg phenotypes in defence against brood parasites. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210326.	1.2	3
4	Generalist camouflage can be more successful than microhabitat specialisation in natural environments. Bmc Ecology and Evolution, 2021, 21, 151.	0.7	5
5	Different ontogenetic trajectories of body colour, pattern and crypsis in two sympatric intertidal crab species. Biological Journal of the Linnean Society, 2021, 132, 17-31.	0.7	3
6	Horse vision and obstacle visibility in horseracing. Applied Animal Behaviour Science, 2020, 222, 104882.	0.8	5
7	The Size, Symmetry, and Color Saturation of a Male Guppy's Ornaments Forecast His Resistance to Parasites. American Naturalist, 2020, 196, 597-608.	1.0	11
8	Finding a signal hidden among noise: how can predators overcome camouflage strategies?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190478.	1.8	13
9	Discolouring the Amazon Rainforest: how deforestation is affecting butterfly coloration. Biodiversity and Conservation, 2020, 29, 2821-2838.	1.2	14
10	Ship noise inhibits colour change, camouflage, and anti-predator behaviour in shore crabs. Current Biology, 2020, 30, R211-R212.	1.8	16
11	The key role of behaviour in animal camouflage. Biological Reviews, 2019, 94, 116-134.	4.7	94
12	Background matching and disruptive coloration as habitat-specific strategies for camouflage. Scientific Reports, 2019, 9, 7840.	1.6	57
13	Colour change and behavioural choice facilitate chameleon prawn camouflage against different seaweed backgrounds. Communications Biology, 2019, 2, 230.	2.0	25
14	Imperfect camouflage: how to hide in a variable world?. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190646.	1.2	37
15	Higher-level pattern features provide additional information to birds when recognizing and rejecting parasitic eggs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180197.	1.8	18
16	<scp>patâ€geom</scp> : A software package for the analysis of animal patterns. Methods in Ecology and Evolution, 2019, 10, 591-600.	2.2	36
17	Improved camouflage through ontogenetic colour change confers reduced detection risk in shore crabs. Functional Ecology, 2019, 33, 654-669.	1.7	33
18	Drosophila melanogaster cloak their eggs with pheromones, which prevents cannibalism. PLoS Biology, 2019, 17, e2006012.	2.6	27

#	Article	IF	CITATIONS
19	No evidence of quantitative signal honesty across species of aposematic burnet moths (Lepidoptera:) Tj ETQq1	1 0,7,84314	rgBT /Over
20	Colour polymorphism in the coconut crab (Birgus latro). Evolutionary Ecology, 2018, 32, 75-88.	0.5	18
21	Evolution of correlated complexity in the radically different courtship signals of birds-of-paradise. PLoS Biology, 2018, 16, e2006962.	2.6	83
22	Latitudinal variation in biophysical characteristics of avian eggshells to cope with differential effects of solar radiation. Ecology and Evolution, 2018, 8, 8019-8029.	0.8	15
23	The adaptive value of camouflage and colour change in a polymorphic prawn. Scientific Reports, 2018, 8, 16028.	1.6	22
24	Camouflage strategies interfere differently with observer search images. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181386.	1,2	23
25	Rock pool fish use a combination of colour change and substrate choice to improve camouflage. Animal Behaviour, 2018, 144, 53-65.	0.8	26
26	Parental phenotype not predator cues influence egg warning coloration and defence levels. Animal Behaviour, 2018, 140, 177-186.	0.8	7
27	Sex differences but no evidence of quantitative honesty in the warning signals of six-spot burnet moths (<i>Zygaena filipendulae</i> L.)*. Evolution; International Journal of Organic Evolution, 2018, 72, 1460-1474.	1.1	8
28	Invasive Egg Predators and Food Availability Interactively Affect Maternal Investment in Egg Chemical Defense. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	3
29	Avian vision models and field experiments determine the survival value of peppered moth camouflage. Communications Biology, $2018, 1, 118$.	2.0	28
30	Individual egg camouflage is influenced by microhabitat selection and use of nest materials in ground-nesting birds. Behavioral Ecology and Sociobiology, 2018, 72, 1.	0.6	25
31	The appearance of mimetic <i>Heliconius</i> butterflies to predators and conspecifics. Evolution; International Journal of Organic Evolution, 2018, 72, 2156-2166.	1.1	33
32	Plant Camouflage: Ecology, Evolution, and Implications. Trends in Ecology and Evolution, 2018, 33, 608-618.	4.2	35
33	Shape matters: animal colour patterns as signals of individual quality. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162446.	1.2	39
34	Quantifying camouflage: how to predict detectability from appearance. BMC Evolutionary Biology, 2017, 17, 7.	3.2	74
35	Does coevolution with a shared parasite drive hosts to partition their defences among species?. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170272.	1.2	9
36	Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160342.	1.8	139

#	Article	IF	CITATIONS
37	Insect herbivory may cause changes in the visual properties of leaves and affect the camouflage of herbivores to avian predators. Behavioral Ecology and Sociobiology, 2017, 71, 1.	0.6	13
38	Diversity in warning coloration is easily recognized by avian predators. Journal of Evolutionary Biology, 2017, 30, 1288-1302.	0.8	18
39	Egg spotting pattern in common cuckoos and their great reed warbler hosts: a century perspective. Biological Journal of the Linnean Society, 2017, 121, 50-62.	0.7	8
40	Through predators' eyes: phenotype–environment associations in shore crab coloration at different spatial scales. Biological Journal of the Linnean Society, 2017, 122, 738-751.	0.7	22
41	Divergence in cryptic leaf colour provides local camouflage in an alpine plant. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171654.	1.2	46
42	Improvement of individual camouflage through background choice in ground-nesting birds. Nature Ecology and Evolution, 2017, 1, 1325-1333.	3.4	58
43	The biology of color. Science, 2017, 357, .	6.0	509
44	Rock pool gobies change their body pattern in response to background features. Biological Journal of the Linnean Society, 2017, 121, 109-121.	0.7	9
45	Relative advantages of dichromatic and trichromatic color vision in camouflage breaking. Behavioral Ecology, 2017, 28, 556-564.	1.0	28
46	When to attack defended prey? A comment on Skelhorn et al Behavioral Ecology, 2016, 27, 966.1-966.	1.0	1
47	Color Change, Phenotypic Plasticity, and Camouflage. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	72
48	Shape, colour plasticity, and habitat use indicate morph-specific camouflage strategies in a marine shrimp. BMC Evolutionary Biology, 2016, 16, 218.	3.2	40
49	Camouflage predicts survival in ground-nesting birds. Scientific Reports, 2016, 6, 19966.	1.6	119
50	Avoidance of an aposematically coloured butterfly by wild birds in a tropical forest. Ecological Entomology, 2016, 41, 627-632.	1.1	34
51	The ecology of multiple colour defences. Evolutionary Ecology, 2016, 30, 797-809.	0.5	66
52	Escape Distance in Ground-Nesting Birds Differs with Individual Level of Camouflage. American Naturalist, 2016, 188, 231-239.	1.0	41
53	Brood Parasitism Is Linked to Egg Pattern Diversity within and among Species of Australian Passerines. American Naturalist, 2016, 187, 351-362.	1.0	17
54	Camouflage. Current Biology, 2016, 26, R654-R656.	1.8	10

#	Article	IF	CITATIONS
55	Nest covering in plovers: How modifying the visual environment influences egg camouflage. Ecology and Evolution, 2016, 6, 7536-7545.	0.8	24
56	Microhabitat choice in island lizards enhances camouflage against avian predators. Scientific Reports, 2016, 6, 19815.	1.6	54
57	Hosts of avian brood parasites have evolved egg signatures with elevated information content. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150598.	1.2	34
58	Body size but not warning signal luminance influences predation risk in recently metamorphosed poison frogs. Ecology and Evolution, 2015, 5, 4603-4616.	0.8	12
59	Conspicuous male coloration impairs survival against avian predators in Aegean wall lizards, <i>Podarcis erhardii</i> . Ecology and Evolution, 2015, 5, 4115-4131.	0.8	34
60	Image calibration and analysis toolbox – a free software suite for objectively measuring reflectance, colour and pattern. Methods in Ecology and Evolution, 2015, 6, 1320-1331.	2,2	355
61	Signal honesty and predation risk among a closely related group of aposematic species. Scientific Reports, 2015, 5, 11021.	1.6	56
62	The role of stripe orientation in target capture success. Frontiers in Zoology, 2015, 12, 17.	0.9	35
63	Anti-Predator Coloration and Behaviour: A Longstanding Topic with Many Outstanding Questions. Environmental Epigenetics, 2015, 61, 702-707.	0.9	11
64	Phenotype–environment matching in sand fleas. Biology Letters, 2015, 11, 20150494.	1.0	25
65	Changes in Women's Facial Skin Color over the Ovulatory Cycle are Not Detectable by the Human Visual System. PLoS ONE, 2015, 10, e0130093.	1.1	37
66	Intraspecific Colour Variation among Lizards in Distinct Island Environments Enhances Local Camouflage. PLoS ONE, 2015, 10, e0135241.	1.1	36
67	The evolutionary ecology of decorating behaviour. Biology Letters, 2015, 11, 20150325.	1.0	37
68	Camouflage through behavior in moths: the role of background matching and disruptive coloration. Behavioral Ecology, 2015, 26, 45-54.	1.0	65
69	Evolutionary Ecology: Insect Mothers Control Their Egg Colours. Current Biology, 2015, 25, R755-R757.	1.8	4
70	Rockpool Gobies Change Colour for Camouflage. PLoS ONE, 2014, 9, e110325.	1.1	31
71	Camouflage and Individual Variation in Shore Crabs (Carcinus maenas) from Different Habitats. PLoS ONE, 2014, 9, e115586.	1.1	47
72	Color change and camouflage in juvenile shore crabs Carcinus maenas. Frontiers in Ecology and Evolution, 2014, 2, .	1.1	68

#	Article	IF	CITATIONS
73	Color contrast and stability as key elements for effective warning signals. Frontiers in Ecology and Evolution, $2014, 2, .$	1.1	39
74	Motion dazzle and the effects of target patterning on capture success. BMC Evolutionary Biology, 2014, 14, 201.	3.2	43
75	Confusion and illusion: understanding visual traits and behavior. A comment on Kelley and Kelley. Behavioral Ecology, 2014, 25, 464-465.	1.0	4
76	Maternal effects and warning signal honesty in eggs and offspring of an aposematic ladybird beetle. Functional Ecology, 2014, 28, 1187-1196.	1.7	34
77	Character displacement of Cercopithecini primate visual signals. Nature Communications, 2014, 5, 4266.	5.8	64
78	Evolution: Predator versus Parasite. Current Biology, 2014, 24, R388-R390.	1.8	0
79	Do animal eyespots really mimic eyes?. Environmental Epigenetics, 2014, 60, 26-36.	0.9	42
80	Wall lizards display conspicuous signals to conspecifics and reduce detection by avian predators. Behavioral Ecology, 2014, 25, 1325-1337.	1.0	51
81	Evolutionary Ecology: Knowing How to Hide Your Eggs. Current Biology, 2013, 23, R106-R108.	1.8	10
82	A window on the past: male ornamental plumage reveals the quality of their early-life environment. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122852.	1.2	30
83	Bird brood parasitism. Current Biology, 2013, 23, R909-R913.	1.8	18
84	Exchanging messages between plants and animals. Trends in Ecology and Evolution, 2013, 28, 386-387.	4.2	0
85	Discrete colour polymorphism in the tawny dragon lizard (<i><scp>C</scp>tenophorus decresii</i>) and differences in signal conspicuousness among morphs. Journal of Evolutionary Biology, 2013, 26, 1035-1046.	0.8	63
86	Diet, development and the optimization of warning signals in postâ€metamorphic green and black poison frogs. Functional Ecology, 2013, 27, 816-829.	1.7	14
87	Colour change and camouflage in the horned ghost crab <i>Ocypode ceratophthalmus</i> Journal of the Linnean Society, 2013, 109, 257-270.	0.7	67
88	Signaling in multiple modalities in male rhesus macaques: sex skin coloration and barks in relation to androgen levels, social status, and mating behavior. Behavioral Ecology and Sociobiology, 2013, 67, 1457-1469.	0.6	44
89	Repeated targeting of the same hosts by a brood parasite compromises host egg rejection. Nature Communications, 2013, 4, 2475.	5.8	71
90	What is camouflage through distractive markings? A reply to Merilaita et al. (2013). Behavioral Ecology, 2013, 24, e1272-e1273.	1.0	9

#	Article	IF	Citations
91	Revealed by conspicuousness: distractive markings reduce camouflage. Behavioral Ecology, 2013, 24, 213-222.	1.0	42
92	Defeating Crypsis: Detection and Learning of Camouflage Strategies. PLoS ONE, 2013, 8, e73733.	1.1	54
93	Sensory Ecology, Information, and Decision-Making. , 2013, , 2-18.		1
94	Sensing the World., 2013,, 21-39.		0
95	Disruptive ecological selection on a mating cue. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4907-4913.	1.2	143
96	Linking the evolution and form of warning coloration in nature. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 417-426.	1.2	208
97	Host-Parasite Arms Races and Rapid Changes in Bird Egg Appearance. American Naturalist, 2012, 179, 633-648.	1.0	103
98	Rethinking visual supernormal stimuli in cuckoos: visual modeling of host and parasite signals. Behavioral Ecology, 2011, 22, 1012-1019.	1.0	18
99	The history, theory and evidence for a cryptic function of countershading., 2011,, 53-72.		26
100	Rapid adaptive camouflage in cephalopods. , 2011, , 145-163.		23
101	What can camouflage tell us about non-human visual perception? A case study of multiple cue use in cuttlefish (<i>Sepia</i> spp.)., 2011,, 164-185.		6
102	Camouflage in decorator crabs. , 2011, , 212-236.		22
103	The functions of black-and-white coloration in mammals. , 2011, , 298-329.		11
104	Animal camouflage. , 2011, , 1-16.		17
105	Camouflage and visual perception. , 2011, , 118-144.		3
106	Camouflage in marine fish., 2011,, 186-211.		48
107	AVIAN VISION AND THE EVOLUTION OF EGG COLOR MIMICRY IN THE COMMON CUCKOO. Evolution; International Journal of Organic Evolution, 2011, 65, 2004-2013.	1.1	175
108	Motion dazzle and camouflage as distinct anti-predator defenses. BMC Biology, 2011, 9, 81.	1.7	97

#	Article	IF	CITATIONS
109	Direction and strength of selection by predators for the color of the aposematic wood tiger moth. Behavioral Ecology, 2011, 22, 580-587.	1.0	71
110	How to evade a coevolving brood parasite: egg discrimination versus egg variability as host defences. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3566-3573.	1.2	118
111	Familiarity affects the assessment of female facial signals of fertility by free-ranging male rhesus macaques. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3452-3458.	1.2	71
112	Visual mimicry of host nestlings by cuckoos. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2455-2463.	1.2	111
113	Avian Vision and Egg Colouration: Concepts and Measurements. Avian Biology Research, 2011, 4, 168-184.	0.4	44
114	The causes and scope of political egalitarianism during the Last Glacial: a multi-disciplinary perspective. Biology and Philosophy, 2010, 25, 319-346.	0.7	24
115	Pattern mimicry of host eggs by the common cuckoo, as seen through a bird's eye. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1387-1393.	1.2	214
116	Color signal information content and the eye of the beholder: a case study in the rhesus macaque. Behavioral Ecology, 2010, 21, 739-746.	1.0	95
117	Visual modeling shows that avian host parents use multiple visual cues in rejecting parasitic eggs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8672-8676.	3.3	251
118	The effect of predator appetite, prey warning coloration and luminance on predator foraging decisions. Behaviour, 2010, 147, 1121-1143.	0.4	48
119	The function of animal â€ [*] eyespots': Conspicuousness but not eye mimicry is key. Environmental Epigenetics, 2009, 55, 319-326.	0.9	24
120	Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 423-427.	1.8	574
121	Defining disruptive coloration and distinguishing its functions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 481-488.	1.8	241
122	The protective value of conspicuous signals is not impaired by shape, size, or position asymmetry. Behavioral Ecology, 2009, 20, 96-102.	1.0	15
123	Outline and surface disruption in animal camouflage. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 781-786.	1.2	56
124	Are dark cuckoo eggs cryptic in host nests?. Animal Behaviour, 2009, 78, 461-468.	0.8	96
125	Studying Primate Color: Towards Visual System-dependent Methods. International Journal of Primatology, 2009, 30, 893-917.	0.9	141
126	The anti-predator function of  eyespots' on camouflaged and conspicuous prey. Behavioral Ecology and Sociobiology, 2008, 62, 1787-1793.	0.6	48

#	Article	IF	Citations
127	Testing Thayer's hypothesis: can camouflage work by distraction?. Biology Letters, 2008, 4, 648-650.	1.0	28
128	Conspicuousness, not eye mimicry, makes "eyespots" effective antipredator signals. Behavioral Ecology, 2008, 19, 525-531.	1.0	113
129	Dazzle coloration and prey movement. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2639-2643.	1.2	115
130	Animal camouflage: compromise or specialize in a 2 patch-type environment?. Behavioral Ecology, 2007, 18, 769-775.	1.0	66
131	Predator perception and the interrelation between different forms of protective coloration. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1457-1464.	1.2	216
132	Hidden Messages: Are Ultraviolet Signals a Special Channel in Avian Communication?. BioScience, 2007, 57, 501-507.	2.2	48
133	Using digital photography to study animal coloration. Biological Journal of the Linnean Society, 2007, 90, 211-237.	0.7	542
134	Countershading enhances cryptic protection: an experiment with wild birds and artificial prey. Animal Behaviour, 2007, 74, 1249-1258.	0.8	61
135	Field experiments on the effectiveness of â€~eyespots' as predator deterrents. Animal Behaviour, 2007, 74, 1215-1227.	0.8	73
136	Chapter 4 The effectiveness of disruptive coloration as a concealment strategy. Progress in Brain Research, 2006, 155, 49-64.	0.9	28
137	Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2141-2147.	1.2	210
138	Disruptive contrast in animal camouflage. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2433-2438.	1.2	166
139	The effects of pattern symmetry on detection of disruptive and background-matching coloration. Behavioral Ecology, 2006, 17, 828-832.	1.0	44
140	Disruptive coloration and background pattern matching. Nature, 2005, 434, 72-74.	13.7	462
141	The unsuitability of HTML-based colour charts for estimating animal colours–a comment on Berggren and Meril¤(2004). Frontiers in Zoology, 2005, 2, 14.	0.9	23
142	The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera. Biological Reviews, 2005, 80, 573-588.	4.7	232
143	Crypsis through background matching. , 0, , 17-33.		56
144	The concealment of body parts through coincident disruptive coloration., 0,, 34-52.		1

#	Article	IF	CITATIONS
145	Camouflage-breaking mathematical operators and countershading. , 0, , 73-86.		O
146	Nature's artistry. , 0, , 87-100.		O
147	Camouflage behaviour and body orientation on backgrounds containing directional patterns. , 0, , 101-117.		2
148	Camouflage in colour-changing animals. , 0, , 237-253.		17
149	Effects of animal camouflage on the evolution of live backgrounds. , 0, , 275-297.		O
150	Color in camouflage, mimicry, and warning signals. , 0, , 357-376.		0