Konstantin E Riumkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1325471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bi-Doped Optical Fibers and Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 111-125.	2.9	192
2	Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600–1800  nm. Optics Letters, 2014, 39, 6927.	3.3	104
3	A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band. Scientific Reports, 2016, 6, 28939.	3.3	82
4	Laser-Active Fibers Doped With Bismuth for a Wavelength Region of 1.6–1.8 μm. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-15.	2.9	77
5	Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 17  μm. Optics Letters, 2015, 40 4360.	0, _{3.3}	66
6	Wideband bismuth- and erbium-codoped optical fiber amplifier for C  +  L  + Laser Physics Letters, 2017, 14, 110001.	u-telecon 1.4	munication 45
7	Excited-state absorption in various bismuth-doped fibers. Optics Letters, 2014, 39, 2503.	3.3	38
8	Laser-induced bleaching and thermo-stimulated recovery of luminescent centers in bismuth-doped optical fibers. Optical Materials Express, 2017, 7, 3422.	3.0	36
9	NALM-based bismuth-doped fiber laser at 17  μm. Optics Letters, 2018, 43, 1127.	3.3	36
10	Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing. Laser Physics, 2016, 26, 084007.	1.2	29
11	Eâ€band data transmission over 80Âkm of nonâ€zero dispersion fibre link using bismuthâ€doped fibre amplifier. Electronics Letters, 2017, 53, 1661-1663.	1.0	29
12	Bismuth-doped fiber laser at 132 μm mode-locked by single-walled carbon nanotubes. Optics Express, 2018, 26, 23911.	3.4	28
13	Pump-efficient flattop O+E-bands bismuth-doped fiber amplifier with 116 nm –3 dB gain bandwidth. Optics Express, 2021, 29, 44138.	3.4	28
14	Superfluorescent 144Âμm bismuth-doped fiber source. Optics Letters, 2012, 37, 4817.	3.3	27
15	Simple Broadband Bismuth Doped Fiber Amplifier (BDFA) to Extend O-band Transmission Reach and Capacity. , 2019, , .		23
16	A new bismuth-doped fibre laser, emitting in the range 1625 – 1775 nm. Quantum Electronics, 2014, 44, 503-504.	1.0	21
17	Formation of laser-active centers in bismuth-doped high-germania silica fibers by thermal treatment. Optics Express, 2018, 26, 12363.	3.4	20
18	25 Gb s ⁻¹ data transmission using a bismuth-doped fibre amplifier with a gain peak shifted to 1300 nm. Quantum Electronics, 2018, 48, 989-992.	1.0	18

#	Article	IF	CITATIONS
19	The Influence of the MCVD Process Parameters on the Optical Properties of Bismuth-Doped Phosphosilicate Fibers. Journal of Lightwave Technology, 2020, 38, 6114-6120.	4.6	17
20	Superfluorescent 1.34 μm bismuth-doped fibre source. Quantum Electronics, 2014, 44, 700-702.	1.0	15
21	Effect of heat treatment parameters on the optical properties of bismuth-doped GeO ₂ :SiO ₂ glass fibers. Optical Materials Express, 2019, 9, 2165.	3.0	15
22	Picosecond 1.3-μm bismuth fibre laser mode-locked by a nonlinear loop mirror. Quantum Electronics, 2016, 46, 1077-1081.	1.0	14
23	Effect of gamma-irradiation on the optical properties of bismuth-doped germanosilicate fibers. Optical Materials Express, 2016, 6, 3303.	3.0	13
24	Bend-insensitive bismuth-doped P ₂ O ₅ -SiO ₂ glass core fiber for a compact O-band amplifier. Optics Letters, 2020, 45, 2576.	3.3	13
25	W-type and Graded-index bismuth-doped fibers for efficient lasers and amplifiers operating in E-band. Optics Express, 2022, 30, 1490.	3.4	13
26	Optical properties of IR-emitting centres in Pb-doped silica fibres. Quantum Electronics, 2012, 42, 310-314.	1.0	12
27	Radial distribution and absorption cross section of active centers in bismuth-doped phosphosilicate fibers. Optics Express, 2020, 28, 29335.	3.4	11
28	Bismuth-doped fibre amplifier operating between 1600 and 1800 nm. Quantum Electronics, 2015, 45, 1083-1085.	1.0	10
29	Performance of 1.73 μm Superluminescent Source Based on Bismuth-Doped Fiber Under Various Temperature Conditions and γ-Irradiation. Journal of Lightwave Technology, 2017, 35, 4114-4119.	4.6	10
30	Radiation-induced absorption in bismuth-doped germanosilicate fibres. Quantum Electronics, 2017, 47, 1120-1124.	1.0	10
31	Cladding-pumped bismuth-doped fiber laser. Optics Letters, 2022, 47, 778.	3.3	10
32	Gain Clamped Bi-Doped Fiber Amplifier With 150 nm Bandwidth for O- and E-Bands. Journal of Lightwave Technology, 2022, 40, 1161-1166.	4.6	8
33	Bismuth-doped fibers and fiber lasers for a new spectral range of 1600-1800 nm. Proceedings of SPIE, 2016, , .	0.8	7
34	Q-Switched Bismuth-Doped Fiber Laser at 1330 nm. IEEE Photonics Technology Letters, 2019, 31, 963-966.	2.5	7
35	O-band bismuth-doped fiber amplifier with 67 nm bandwidth. , 2020, , .		7
36	Anti-Stokes luminescence in bismuth-doped aluminoand phosphosilicate fibres under two-step IR excitation. Quantum Electronics, 2016, 46, 612-616.	1.0	5

Konstantin E Riumkin

#	Article	IF	CITATIONS
37	Gain characteristics of fibers with a heavily erbium-doped phosphate-based core and silica cladding. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2705.	2.1	5
38	Optical properties of bismuth-doped KCl and SrF2crystals. Laser Physics, 2016, 26, 096201.	1.2	4
39	Excited State Absorption in Bismuth-doped Fibers with Various Glass Compositions. , 2014, , .		3
40	Bismuth-Doped Optical Fibers for the Telecommunication L and U Bands: Effect of Laser and Thermal Treatment on Gain Characteristics. , 2018, , .		3
41	Anti-Stokes luminescence in bismuth-doped high-germania core fibres. Quantum Electronics, 2019, 49, 237-240.	1.0	3
42	Erbium-doped optical fibre with enhanced radiation resistance for superluminescent fibre sources. Quantum Electronics, 2019, 49, 693-697.	1.0	3
43	Transient processes and cross talk in an O-band bismuth-doped fibre amplifier. Quantum Electronics, 2021, 51, 630-634.	1.0	3
44	Superluminescent bismuth-doped fibre IR source for the range 1700 – 1750 nm. Quantum Electronics, 2016, 46, 787-789.	1.0	2
45	Bismuth/erbium-doped germanosilicate fibre amplifier with a bandwidth above 200 nm. Quantum Electronics, 2016, 46, 973-975.	1.0	2
46	Temperature-dependent characteristics of bismuth-doped fiber amplifier operating in a 1720-nm band. , 2017, , .		2
47	Combined effect of thermal and laser treatment on the destruction of active centers in Bi-doped phosphosilicate fibers. Optical Materials Express, 2021, 11, 1247.	3.0	2
48	Polarised luminescence of bismuth active centres in germanosilicate glasses. Quantum Electronics, 2020, 50, 502-505.	1.0	2
49	Mode-locked bismuth fiber laser operating at 1.7 $\hat{A}\mu m$ based on NALM. , 2017, , .		2
50	Broadband Optical Amplifier for a Wavelength Region of 1515 $\hat{a} \in 1775$ nm. , 2017, , .		2
51	O+E Band BDFA with Flattop 116 nm Gain Bandwidth Pumped with 250 mW at 1256 nm. , 2021, , .		2
52	Wideband 26 dB bismuth-doped fiber amplifier in the range 1.3-1.44 ŵm. , 2020, , .		2
53	New Bismuth-doped fiber laser operating at 1625–1775 nm. , 2014, , .		1
54	A Novel Bismuth-Doped Fiber Laser for CW Operation between 1625 and 1775 nm. , 2015, , .		1

Konstantin E Riumkin

#	Article	IF	CITATIONS
55	Deterioration of Bismuth-Doped fiber lasers performance induced by blue and green laser light launched into cladding. Results in Physics, 2022, 34, 105276.	4.1	1
56	Superfluorescent 1.44-μm bismuth-doped fiber source. , 2012, , .		0
57	Figure-of-eight bismuth doped fiber laser operating at 1.3 microns in dissipative soliton regime. Proceedings of SPIE, 2017, , .	0.8	Ο
58	Actively Q-switched Bismuth-doped Fiber Laser at 1.35 μm. , 2018, , .		0
59	Lasing features in annealed high-germania-core optical fibers doped with bismuth. , 2018, , .		0
60	Heat-induced Active Centers in Bismuth-doped Optical Fibers for 1.7-µm-region Laser Applications. , 2019, , .		0
61	Efficient Lasers at 1.6-1.8 \hat{l} /4m Based on Bismuth-Doped Germanosilicate Fibers with Thermally Induced Active Centers. , 2018, , .		0
62	SWCNT-Based Bismuth-Doped Fiber Laser at 1.32 μm. , 2018, , .		0
63	Bismuth-Doped Phosphosilicate Fibers: Sintering Temperature and Drawing Conditions Effects. , 2020, ,		Ο
64	Absorption Cross Section Spectra of Bismuth Active Centers Associated with Phosphorus. , 2020, , .		0
65	Thermal stability of bismuth-doped high-GeO2 fiber lasers. , 2020, , .		0
66	Bend-insensitive Bi-doped fiber for a compact laser operating at 1.3-Â μ m wavelength region. , 2020, , .		0
67	Laser radiation resistance of active centers in bismuth-doped GeO2-SiO2-glass core fibers. , 2020, , .		0