Younggy Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1325053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation of Pb(II)-reducing bacteria and demonstration of biological Pb(II) reduction to metallic Pb. Journal of Hazardous Materials, 2022, 423, 126975.	6.5	6
2	Estimation of kinetic constants in high-density polyethylene bead degradation using hydrolytic enzymes. Environmental Pollution, 2022, 298, 118821.	3.7	6
3	Molecular biology and modeling analysis reveal functional roles of propionate to acetate ratios on microbial syntrophy and competition in electro-assisted anaerobic digestion. Water Research, 2022, 216, 118335.	5.3	17
4	Enhanced Pb(II) removal from water using conductive carbonaceous nanomaterials as bacterial scaffolds: An experimental and modelling approach. Journal of Hazardous Materials, 2022, 431, 128516.	6.5	8
5	Model study on real-time aeration based on nitrite for effective operation of single-stage anammox. Environmental Research, 2022, 212, 113554.	3.7	5
6	Fractionated volatile solids for understanding thermophilic pretreatment of waste activated sludge at 55, 65, and 75ŰC. Water Environment Research, 2021, 93, 201-206.	1.3	0
7	Ammonium sulfate production from wastewater and low-grade sulfuric acid using bipolar- and cation-exchange membranes. Journal of Cleaner Production, 2021, 285, 124888.	4.6	15
8	Ammonia separation from wastewater using bipolar membrane electrodialysis. Electrochemical Science Advances, 2021, 1, e2000030.	1.2	4
9	Comprehensive model applications for better understanding of pilot-scale membrane-aerated biofilm reactor performance. Journal of Water Process Engineering, 2021, 40, 101894.	2.6	21
10	Microbial fuel cells: Devices for real wastewater treatment, rather than electricity production. Science of the Total Environment, 2021, 775, 145904.	3.9	25
11	Modeling the anaerobic digestion of wastewater sludge under sulfateâ€rich conditions. Water Environment Research, 2021, 93, 2084-2096.	1.3	3
12	Membrane Scaling in Electrodialysis Fed with High-Strength Wastewater. Environmental Engineering Science, 2021, 38, 832-840.	0.8	4
13	Global and regional potential of wastewater as a water, nutrient and energy source. Natural Resources Forum, 2020, 44, 40-51.	1.8	190
14	A new model with serial hydrolysis reactions for the anaerobic digestion of waste activated sludge under thermophilic conditions. Environmental Science: Water Research and Technology, 2019, 5, 2182-2192.	1.2	1
15	A robust inexact trapezoidal T2 fuzzy approach coupling possibility degrees for solid waste disposal allocation with integrated optimal greenhouse gas control under uncertainty. Journal of Cleaner Production, 2019, 221, 753-767.	4.6	13
16	Stacked multi-electrode design of microbial electrolysis cells for rapid and low-sludge treatment of municipal wastewater. Biotechnology for Biofuels, 2019, 12, 23.	6.2	20
17	Scalable multi-electrode microbial electrolysis cells for high electric current and rapid organic removal. Journal of Power Sources, 2018, 391, 67-72.	4.0	11
18	Preparation and characterization of ion selective membrane and its application for Cu 2+ removal. Journal of Industrial and Engineering Chemistry, 2018, 60, 475-484.	2.9	30

YOUNGGY КІМ

#	Article	IF	CITATIONS
19	The α-Representation Inexact T2 Fuzzy Sets Programming Model for Water Resources Management of the Southern Min River Basin under Uncertainty. Symmetry, 2018, 10, 579.	1.1	1
20	A Bi-Objective Pseudo-Interval T2 Linear Programming Approach and Its Application to Water Resources Management Under Uncertainty. Water (Switzerland), 2018, 10, 1545.	1.2	3
21	Increasing phosphorus recovery from dewatering centrate in microbial electrolysis cells. Biotechnology for Biofuels, 2017, 10, 70.	6.2	29
22	Accurate and rapid organic detection by eliminating hysteresis in bioanode sensor applications. Environmental Science: Water Research and Technology, 2017, 3, 905-910.	1.2	4
23	Electrochemical techniques for evaluating short-chain fatty acid utilization by bioanodes. Environmental Science and Pollution Research, 2017, 24, 2620-2626.	2.7	6
24	Effect of Low Cadmium Concentration on the Removal Efficiency and Mechanisms in Microbial Electrolysis Cells. ChemistrySelect, 2016, 1, 6920-6924.	0.7	4
25	Lead(II) Removal at the Bioanode of Microbial Electrolysis Cells. ChemistrySelect, 2016, 1, 5743-5748.	0.7	17
26	Cadmium (II) removal mechanisms in microbial electrolysis cells. Journal of Hazardous Materials, 2016, 311, 134-141.	6.5	81
27	The yield and decay coefficients of exoelectrogenic bacteria in bioelectrochemical systems. Water Research, 2016, 94, 233-239.	5.3	43
28	Electrochemical silver dissolution and recovery as a potential method to disinfect drinking water for underprivileged societies. Environmental Science: Water Research and Technology, 2016, 2, 304-311.	1.2	3
29	Junction potentials in thermolytic reverse electrodialysis. Desalination, 2015, 369, 149-155.	4.0	15
30	Enhanced digestion of waste activated sludge using microbial electrolysis cells at ambient temperature. Water Research, 2015, 87, 503-512.	5.3	62
31	Microbial electrolysis cell with spiral wound electrode for wastewater treatment and methane production. Process Biochemistry, 2015, 50, 1103-1109.	1.8	50
32	Treatment of model inland brackish groundwater reverse osmosis concentrate with electrodialysis — Part III: Sensitivity to composition and hydraulic recovery. Desalination, 2014, 347, 158-164.	4.0	16
33	Energy efficient reconcentration of diluted human urine using ion exchange membranes in bioelectrochemical systems. Water Research, 2014, 64, 61-72.	5.3	77
34	Treatment of model inland brackish groundwater reverse osmosis concentrate with electrodialysis $\hat{a} \in$ "Part I: sensitivity to superficial velocity. Desalination, 2014, 344, 152-162.	4.0	54
35	Influence of substrate concentration and feed frequency on ammonia inhibition in microbial fuel cells. Journal of Power Sources, 2014, 271, 360-365.	4.0	33
36	Methanogenesis control by electrolytic oxygen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 2014, 39, 3079-3086.	3.8	61

YOUNGGY KIM

#	Article	IF	CITATIONS
37	Treatment of model inland brackish groundwater reverse osmosis concentrate with electrodialysis — Part II: Sensitivity to voltage application and membranes. Desalination, 2014, 345, 128-135.	4.0	37
38	Increasing Desalination by Mitigating Anolyte pH Imbalance Using Catholyte Effluent Addition in a Multi-Anode Bench Scale Microbial Desalination Cell. ACS Sustainable Chemistry and Engineering, 2013, 1, 1200-1206.	3.2	51
39	Powering microbial electrolysis cells by capacitor circuits charged using microbial fuel cell. Journal of Power Sources, 2013, 229, 198-202.	4.0	63
40	Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells. Electrochimica Acta, 2013, 89, 45-51.	2.6	39
41	Microbial desalination cells for energy production and desalination. Desalination, 2013, 308, 122-130.	4.0	246
42	Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems. Desalination, 2013, 308, 115-121.	4.0	98
43	Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution. Environmental Science & Technology, 2012, 46, 5240-5246.	4.6	101
44	Competitive separation of di- vs. mono-valent cations in electrodialysis: Effects of the boundary layer properties. Water Research, 2012, 46, 2042-2056.	5.3	73
45	Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells. Science, 2012, 335, 1474-1477.	6.0	232
46	Overlimiting current by interactive ionic transport between space charge region and electric double layer near ion-exchange membranes. Desalination, 2012, 285, 245-252.	4.0	9
47	Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination. Environmental Science & Technology, 2011, 45, 5840-5845.	4.6	167
48	Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production. Environmental Science & Technology, 2011, 45, 5834-5839.	4.6	112
49	Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal. Energy and Environmental Science, 2011, 4, 4662.	15.6	143
50	Selectivity coefficients of cation-exchange membranes: Maximizing consistency and minimizing error amplification. Separation and Purification Technology, 2011, 81, 357-362.	3.9	3
51	Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16176-16181.	3.3	159
52	Electrodialysis with spacers: Effects of variation and correlation of boundary layer thickness. Desalination, 2011, 274, 54-63.	4.0	57
53	The Painlevé equation of the second kind for the binary ionic transport in diffusion boundary layers near ion-exchange membranes at overlimiting current. Journal of Electroanalytical Chemistry, 2010, 639, 59-66.	1.9	8