Marc Claret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1325017/publications.pdf

Version: 2024-02-01

		840776	839539
19	1,531	11	18
papers	citations	h-index	g-index
20	20	20	2224
20	20	20	2384
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function. Journal of Hepatology, 2022, 76 , 11 -24.	3.7	16
2	Hypothalamic pregnenolone mediates recognition memory in the context of metabolic disorders. Cell Metabolism, 2022, 34, 269-284.e9.	16.2	13
3	Angiocrine polyamine production regulates adiposity. Nature Metabolism, 2022, 4, 327-343.	11.9	31
4	Food craving-like episodes during pregnancy are mediated by accumbal dopaminergic circuits. Nature Metabolism, 2022, 4, 424-434.	11.9	13
5	POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nature Metabolism, 2021, 3, 299-308.	11.9	80
6	Sirt3 in POMC neurons controls energy balance in a sex- and diet-dependent manner. Redox Biology, 2021, 41, 101945.	9.0	9
7	Cooperative tanycytes fuel the neuronal tank. Journal of Clinical Investigation, 2021, 131, .	8.2	2
8	Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis. Cell Metabolism, 2021, 33, 1820-1835.e9.	16.2	32
9	BACE2 suppression in mice aggravates the adverse metabolic consequences of an obesogenic diet. Molecular Metabolism, 2021, 53, 101251.	6.5	4
10	Developmental and Tumor Angiogenesis Requires the Mitochondria-Shaping Protein Opa1. Cell Metabolism, 2020, 31, 987-1003.e8.	16.2	101
11	Pro-opiomelanocortin (POMC) neuron translatome signatures underlying obesogenic gestational malprogramming in mice. Molecular Metabolism, 2020, 36, 100963.	6.5	12
12	A question of identity: Tbx3 carries the POMC flag. Nature Metabolism, 2019, 1, 175-176.	11.9	0
13	Endothelial Cells: New Players in Obesity and Related Metabolic Disorders. Trends in Endocrinology and Metabolism, 2018, 29, 781-794.	7.1	59
14	Hypothalamic Control of Systemic Glucose Homeostasis: The Pancreas Connection. Trends in Endocrinology and Metabolism, 2018, 29, 581-594.	7.1	59
15	p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nature Communications, 2018, 9, 3432.	12.8	41
16	Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control. Cell Metabolism, 2017, 25, 1390-1399.e6.	16.2	106
17	Mitofusin 2 in POMC Neurons Connects ER Stress with Leptin Resistance and Energy Imbalance. Cell, 2013, 155, 172-187.	28.9	429
18	Deletion of miRNA processing enzyme Dicer in POMC-expressing cells leads to pituitary dysfunction, neurodegeneration and development of obesity. Molecular Metabolism, 2013, 2, 74-85.	6.5	79

#	Article	IF	CITATIONS
19	AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. Journal of Clinical Investigation, 2007, 117, 2325-2336.	8.2	445