List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1324833/publications.pdf Version: 2024-02-01

ΤΟΟΡΗ ΟΟΥΛ

#	Article	IF	CITATIONS
1	Size Dependency of Selective Cellular Uptake of Epigallocatechin Gallate-modified Gold Nanoparticles for Effective Radiosensitization. ACS Applied Bio Materials, 2022, 5, 355-365.	2.3	7
2	Effect of tethered sheet-like motif and asymmetric topology on hydrogelation of star-shaped block copolypeptides. Polymer, 2022, 250, 124864.	1.8	5
3	Combined Treatment with Ultrasound and Immune Checkpoint Inhibitors for Prostate Cancer. Journal of Clinical Medicine, 2022, 11, 2448.	1.0	4
4	Synthesis and Hydrogelation of Star-Shaped Graft Copolypetides with Asymmetric Topology. Gels, 2022, 8, 366.	2.1	1
5	Role of Hydrophilic Monomers in α â€Tocopherolâ€Based Copolymers in Causing Cell Death by ROS Production. Macromolecular Chemistry and Physics, 2021, 222, 2100099.	1.1	0
6	Effect of Branching Degree of Dendritic Polyglycerols on Plasma Protein Adsorption: Relationship between Hydration States and Surface Morphology. Langmuir, 2021, 37, 8534-8543.	1.6	2
7	Development of endodontic sealers containing antimicrobial-loaded polymer particles with long-term antibacterial effects. Dental Materials, 2021, 37, 1248-1259.	1.6	7
8	Cellâ€Encapsulating Hydrogel Puzzle: Polyrotaxaneâ€Based Selfâ€Healing Hydrogels. Chemistry - A European Journal, 2020, 26, 913-920.	1.7	16
9	Amphiphilic Block Copolymers Bearing Hydrophobic Î ³ -Tocopherol Groups with Labile Acetal Bond. Polymers, 2020, 12, 36.	2.0	0
10	Copolymers Composed of 2-(Methacryloyloxy)ethyl Phosphorylcholine and Methacrylated Polyhedral Oligomeric Silsesquioxane as a Simple Modifier for Liposomes. ACS Applied Polymer Materials, 2020, 2, 1909-1916.	2.0	7
11	Controlled Micelle Formation and Stable Capture of Hydrophobic Drug by Alkylated POSS Methacrylate Block Copolymers. ACS Applied Polymer Materials, 2019, 1, 2108-2119.	2.0	11
12	Modulation of Protein Partition in an Aqueous Two Phase System by Inclusion Complexation of Cyclodextrins. Chemistry Letters, 2019, 48, 1551-1554.	0.7	2
13	Tuned cell attachments by double-network hydrogels consisting of glycol chitosan, carboxylmethyl cellulose and agar bearing robust and self-healing properties. International Journal of Biological Macromolecules, 2019, 134, 262-268.	3.6	11
14	Amphiphilic Copolymer of Polyhedral Oligomeric Silsesquioxane (POSS) Methacrylate for Solid Dispersion of Paclitaxel. Materials, 2019, 12, 1058.	1.3	3
15	Hydrophobic Nature of Methacrylate-POSS in Combination with 2-(Methacryloyloxy)ethyl Phosphorylcholine for Enhanced Solubility and Controlled Release of Paclitaxel. Langmuir, 2019, 35, 1404-1412.	1.6	17
16	Temperature-induced recovery of a bioactive enzyme using polyglycerol dendrimers: correlation between bound water and protein interaction. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 701-715.	1.9	6
17	Tuned Surface and Mechanical Properties of Polymeric Film Prepared by Random Copolymers Consisting of Methacrylateâ€₽OSS and 2â€{Methacryloyloxy)ethyl Phosphorylcholine. Macromolecular Chemistry and Physics, 2018, 219, 1700572.	1.1	8
18	An injectable and self-healing hydrogel for spatiotemporal protein release via fragmentation after passing through needles. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 145-159.	1.9	17

#	Article	IF	CITATIONS
19	A Supramolecular Hydrogel Based on Polyglycerol Dendrimerâ€Specific Amino Group Recognition. Chemistry - an Asian Journal, 2018, 13, 1688-1691.	1.7	4
20	Crosslinked Network with Rotatable Binding Sites Based on Monocarboxylated α yclodextrin [2]Rotaxane Capable of Angiotensinâ€III Recognition. Chemistry - A European Journal, 2017, 23, 4708-4712.	1.7	6
21	Evaluation of Ligand-Conjugated Polyglycerol Dendrimers as a <small>L</small> -arginine Carrier. Kobunshi Ronbunshu, 2017, 74, 304-310.	0.2	0
22	Basic Function and Applications of Polyglycerol Dendrimers. Oleoscience, 2017, 17, 211-216.	0.0	0
23	Hydrophilic crosslinked-polymeric surface capable of effective suppression of protein adsorption. Applied Surface Science, 2016, 378, 467-472.	3.1	8
24	Reflectometric interference spectroscopy-based sensing for evaluating biodegradability of polymeric thin films. Acta Biomaterialia, 2016, 38, 163-167.	4.1	7
25	Enhanced solubilization of α-tocopherol by hyperbranched polyglycerol-modified β-cyclodextin. Journal of Drug Delivery Science and Technology, 2016, 35, 30-33.	1.4	11
26	Amino Acidâ€Dependent Host–Guest Interaction: Polyglycerol Dendrimer of Generationâ€3 Encapsulates Amino Acids Bearing Two Amino Groups. ChemNanoMat, 2015, 1, 264-269.	1.5	4
27	Two-layer reflectometric interference spectroscopy-based immunosensing for C-reactive protein. Mikrochimica Acta, 2015, 182, 307-313.	2.5	8
28	Amphiphilic Polymerizable Porphyrins Conjugated to a Polyglycerol Dendron Moiety as Functional Surfactants for Multifunctional Polymer Particles. Langmuir, 2015, 31, 12903-12910.	1.6	3
29	Reflectometric interference spectroscopy-based immunosensing using immobilized antibody via His-tagged recombinant protein A. Journal of Bioscience and Bioengineering, 2015, 119, 195-199.	1.1	13
30	Molecularly imprinted protein recognition thin films constructed by controlled/living radical polymerization. Journal of Bioscience and Bioengineering, 2015, 119, 200-205.	1.1	36
31	Molecularly Imprinted Polymers for Catechin Recognition Prepared Using Dummy-Template Molecules. Chromatography, 2014, 35, 139-145.	0.8	3
32	Conjugatedâ€Protein Mimics with Molecularly Imprinted Reconstructible and Transformable Regions that are Assembled Using Spaceâ€Filling Prosthetic Groups. Angewandte Chemie, 2014, 126, 12979-12984.	1.6	12
33	Fluorescent protein-imprinted polymers capable of signal transduction of specific binding events prepared by a site-directed two-step post-imprinting modification. Chemical Communications, 2014, 50, 1347-1349.	2.2	66
34	Precisely controlled molecular imprinting of glutathione-s-transferase by orientated template immobilization using specific interaction with an anchored ligand on a gold substrate. Polymer Chemistry, 2014, 5, 4764-4771.	1.9	50
35	Conjugatedâ€Protein Mimics with Molecularly Imprinted Reconstructible and Transformable Regions that are Assembled Using Spaceâ€Filling Prosthetic Groups. Angewandte Chemie - International Edition, 2014, 53, 12765-12770.	7.2	62
36	Molecularly imprinted polymers prepared using protein-conjugated cleavable monomers followed by site-specific post-imprinting introduction of fluorescent reporter molecules. Chemical Communications, 2013, 49, 8450.	2.2	58

#	Article	IF	CITATIONS
37	Simple immobilization of antibody in organic/inorganic hybrid thin films for immunosensing. Biosensors and Bioelectronics, 2013, 43, 45-49.	5.3	12
38	Supraparticles comprised of molecularly imprinted nanoparticles and modified gold nanoparticles as a nanosensor platform. RSC Advances, 2013, 3, 25306.	1.7	26
39	Hydrophilic molecularly imprinted polymers for bisphenol A prepared in aqueous solution. Mikrochimica Acta, 2013, 180, 1387-1392.	2.5	23
40	Fluorescent molecularly imprinted polymer thin films for specific protein detection prepared with dansyl ethylenediamine-conjugated O-acryloyl l-hydroxyproline. Biosensors and Bioelectronics, 2013, 48, 113-119.	5.3	59
41	Microfluidic reflectometric interference spectroscopy-based sensing for exploration of protein–protein interaction conditions. Biosensors and Bioelectronics, 2013, 40, 247-251.	5.3	14
42	Molecularly Imprinted Microspheres for Bisphenol A Prepared Using a Microfluidic Device. Analytical Sciences, 2012, 28, 457-461.	0.8	11
43	¹⁹ F-NMR, ¹ H-NMR, and Fluorescence Studies of Interaction between 5-Fluorouracil and Polyglycerol Dendrimers. Journal of Physical Chemistry B, 2012, 116, 12263-12267.	1.2	18
44	Label-free detection of C-reactive protein using reflectometric interference spectroscopy-based sensing system. Analytica Chimica Acta, 2012, 728, 64-68.	2.6	40
45	Dummy Template-Imprinted Polymers for Bisphenol A Prepared Using a Schiff Base-Type Template Molecule with Post-Imprinting Oxidation. Analytical Letters, 2012, 45, 1204-1213.	1.0	20
46	Fabrication of Carboxylated Silicon Nitride Sensor Chips for Detection of Antigen–Antibody Reaction Using Microfluidic Reflectometric Interference Spectroscopy. Langmuir, 2012, 28, 13609-13615.	1.6	27
47	Dendritic nanospace constructed by only glycerol units enhanced uptake of a fluorescent molecule in aqueous solution. Chemical Communications, 2012, 48, 546-548.	2.2	8
48	Generationâ€Dependent Host–Guest Interactions: Solution States of Polyglycerol Dendrimers of Generationsâ€3 and 4 Modulate the Localization of a Guest Molecule. Chemistry - A European Journal, 2012, 18, 10624-10629.	1.7	8
49	Label-free detection of glycoproteins using reflectometric interference spectroscopy-based sensing system with upright episcopic illumination. Analytical Methods, 2011, 3, 1366.	1.3	17
50	Protein imprinted TiO2-coated quantum dots for fluorescent protein sensing prepared by liquid phase deposition. Soft Matter, 2011, 7, 9681.	1.2	25
51	Fluorescent protein recognition polymer thin films capable of selective signal transduction of target binding events prepared by molecular imprinting with a post-imprinting treatment. Biosensors and Bioelectronics, 2010, 26, 458-462.	5.3	67
52	Highly selective bisphenol A—imprinted polymers prepared by atom transfer radical polymerization. Polymer Chemistry, 2010, 1, 1684.	1.9	47
53	Supramolecular control of polyplex dissociation and cell transfection: Efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes. Journal of Controlled Release, 2008, 131, 137-144.	4.8	64
54	Synthesis of Structurally Well-Defined Triglyceryl Di-, Tri-, and Tetra-Fatty Acid Esters as New Oil Gelators. Synthesis, 2008, 2008, 3663-3669.	1.2	2

#	Article	IF	CITATIONS
55	ãf¢ãf¬ã,ãf¥ãf©ãf¼ã,8f³ãf—ãfªãf³ãf†ã,£ãf³ã,° 最近ã®å±•é⊸‹. Kobunshi, 2008, 57, 903-906.	0.0	0
56	Molecular "Screw and Nutâ€i  α-Cyclodextrin Recognizes Polylactide Chirality. Macromolecules, 2007, 40, 6441-6444.	2.2	37
57	Modulating Rheological Properties of Supramolecular Networks by pH-Responsive Double-Axle Intrusion into Î ³ -Cyclodextrin. Advanced Materials, 2007, 19, 396-400.	11.1	38
58	Effect of polymer adsorption on the water structure at the quartz/water interface studied by optical sum frequency generation. Surface Science, 2007, 601, 5173-5179.	0.8	4
59	Successful low-energy cardioversion using a novel biodegradable gel pad: Feasibility of treating postoperative atrial fibrillation in animals. Journal of Thoracic and Cardiovascular Surgery, 2007, 134, 1519-1525.	0.4	1
60	1H NMR titration study of stimuli-responsive supramolecular assemblies: inclusion complexes between PEG–b-PEI copolymer-grafted dextran and naphthalene-appended γ-cyclodextrin via double-strand inclusion. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 323-328.	1.6	6
61	Preparation of polypseudorotaxane consisting of fluorescent molecule-modified β-cyclodextrins and biotin-terminated poly(propylene glycol) with high yield. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 233-236.	1.6	7
62	Cationic hydrogels of PEG crosslinked by a hydrolyzable polyrotaxane for cartilage regeneration. Reactive and Functional Polymers, 2007, 67, 1408-1417.	2.0	29
63	Providing Natural Water Structure Surrounding Highly Mobile Maltose Groups Conjugated with Polyrotaxanes. Polymer Journal, 2006, 38, 1093-1097.	1.3	9
64	Synthesis, Characterization, and pH-Triggered Dethreading of α-Cyclodextrin-Poly(ethylene glycol) Polyrotaxanes Bearing Cleavable Endcaps. Biomacromolecules, 2006, 7, 2501-2506.	2.6	68
65	Biocleavable Polyrotaxaneâ``Plasmid DNA Polyplex for Enhanced Gene Delivery. Journal of the American Chemical Society, 2006, 128, 3852-3853.	6.6	260
66	pH-Responsive Movement of Cucurbit[7]uril in a Diblock Polypseudorotaxane Containing Dimethyl l²-Cyclodextrin and Cucurbit[7]uril. Organic Letters, 2006, 8, 3159-3162.	2.4	110
67	Synthesis of a biocleavable polyrotaxane-plasmid DNA (pDNA) polyplex and its use for the rapid nonviral delivery of pDNA to cell nuclei. Nature Protocols, 2006, 1, 2861-2869.	5.5	59
68	Surface modification of polyurethane using sulfonated PEG crafted polyrotaxane for improved biocompatibility. Macromolecular Research, 2006, 14, 73-80.	1.0	23
69	Molecular Mobility of Interlocked Structures Exploiting New Functions of Advanced Biomaterials. Chemistry - A European Journal, 2006, 12, 6730-6737.	1.7	138
70	Improved Cell Viability of Linear Polyethylenimine through Î ³ -Cyclodextrin Inclusion for Effective Gene Delivery. ChemBioChem, 2006, 7, 297-302.	1.3	42
71	Molecular-Recognition and Binding Properties of Cyclodextrin-Conjugated Polyrotaxanes. ChemPhysChem, 2006, 7, 1668-1670.	1.0	5
72	pH-Sensitive Locomotion of Cyclodextrins in a Block–Selective Mobile Polyrotaxane. ChemPhysChem, 2006, 7, 1671-1673.	1.0	19

#	Article	IF	CITATIONS
73	One-Pot Synthesis of a Polyrotaxane via Selective Threading of a PEI-b-PEG-b-PEI Copolymer. Macromolecular Bioscience, 2006, 6, 420-424.	2.1	37
74	Hydrotropic Nanocarriers for Poorly Soluble Drugs. , 2006, , 51-73.		8
75	Biochemical and Physical Stimuli-Triggered Cyclodextrin Release from Biodegradable Polyrotaxanes and those Hydrogels. , 2006, , 303-316.		0
76	Self-assembly of cholesterol-hydrotropic dendrimer conjugates into micelle-like structure: Preparation and hydrotropic solubilization of paclitaxel. Science and Technology of Advanced Materials, 2005, 6, 452-456.	2.8	29
77	Temperature-controlled erosion of poly(N-isopropylacrylamide)-based hydrogels crosslinked by methacrylate-introduced hydrolyzable polyrotaxane. Science and Technology of Advanced Materials, 2005, 6, 447-451.	2.8	14
78	Synthesis of Poly(É›-lysine)-Grafted Dextrans and Their pH- and Thermosensitive Hydrogelation with Cyclodextrins. ChemPhysChem, 2005, 6, 1081-1086.	1.0	52
79	Preparation ofα-Cyclodextrin-Terminated Polyrotaxane Consisting ofβ-Cyclodextrins and Pluronic as a Building Block of a Biodegradable Network. Macromolecular Bioscience, 2005, 5, 379-383.	2.1	49
80	Sunflower-Shaped Cyclodextrin-Conjugated Poly(Îμ-Lysine) Polyplex as a Controlled Intracellular Trafficking Device. ChemBioChem, 2005, 6, 1986-1990.	1.3	23
81	Anticoagulant supramolecular-structured polymers: Synthesis and anti coagulant activity of taurine-conjugated carboxyethylester-polyrotaxanes. Science and Technology of Advanced Materials, 2005, 6, 484-490.	2.8	20
82	Rapid Binding of Concanavalin A and Maltoseâ^'Polyrotaxane Conjugates Due to Mobile Motion of α-Cyclodextrins Threaded onto a Poly(ethylene glycol). Bioconjugate Chemistry, 2005, 16, 62-69.	1.8	84
83	Poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane containing hydroxyapatite particles as scaffolds for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1611-1621.	1.9	15
84	Novel biodegradable cholesterol-modified polyrotaxane hydrogels for cartilage regeneration. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1389-1404.	1.9	20
85	Controlling the mechanism of trypsin inhibition by the numbers of α-cyclodextrins and carboxyl groups in carboxyethylester-polyrotaxanes. Journal of Controlled Release, 2004, 96, 301-307.	4.8	41
86	pH-Triggered Assembling System Using Cooperative Binding between Cyclodextrin-Conjugated Poly(ε-lysine)s and Anionic Guest in Aqueous Media. Journal of Physical Chemistry B, 2004, 108, 7646-7650.	1.2	17
87	Structural Role of Guest Molecules in Rapid and Sensitive Supramolecular Assembling System Based on β-Cyclodextrin-Conjugated Poly(ε-lysine). Macromolecules, 2004, 37, 10036-10041.	2.2	12
88	Design of polyrotaxanes as supramolecular conjugates for cells and tissues. Journal of Artificial Organs, 2004, 7, 62-8.	0.4	9
89	Effects of polyrotaxane structure on polyion complexation with DNA. Science and Technology of Advanced Materials, 2004, 5, 363-369.	2.8	24
90	Sulfonated poly(ethylene glycol) containing methacrylate copolymer surfaces; preparation, characterization and in vitro biocompatibility. Macromolecular Research, 2004, 12, 342-351	1.0	15

#	Article	IF	CITATIONS
91	Spontaneous Change of Physical State from Hydrogels to Crystalline Precipitates during Poly-pseudorotaxane Formation. ChemPhysChem, 2004, 5, 1431-1434.	1.0	25

92 Supramolecular Hydrogel Formation Based on Inclusion Complexation Between Poly(ethylene) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 702

93	Gelation Rate Modulation of anα-Cyclodextrin and Poly(ethylene glycol)-Grafted Hyaluronic Acid Solution System by Inclusion Complexation of a Microphase-Separated Structure. Macromolecular Rapid Communications, 2004, 25, 739-742.	2.0	11
94	Dextran Hydrogels Containing Poly(N-isopropylacrylamide) as Grafts and Cross-Linkers Exhibiting Enzymatic Regulation in a Specific Temperature Range. Macromolecular Rapid Communications, 2004, 25, 867-872.	2.0	25
95	Effect of the Mobility of Ligands in Polyrotaxanes on Order Structure of Water Clusters. Langmuir, 2004, 20, 2852-2854.	1.6	24
96	pH Dependence of Polypseudorotaxane Formation between Cationic Linear Polyethylenimine and Cyclodextrins. Macromolecules, 2004, 37, 6705-6710.	2.2	76
97	Block-Selective Polypseudorotaxane Formation in PEI-b-PEC-b-PEI Copolymers via pH Variation. Macromolecules, 2004, 37, 7464-7468.	2.2	63
98	Hydrotropic Dendrimers of Generations 4 and 5:  Synthesis, Characterization, and Hydrotropic Solubilization of Paclitaxel. Bioconjugate Chemistry, 2004, 15, 1221-1229.	1.8	122
99	Temperature- and pH-Controlled Hydrogelation of Poly(ethylene glycol)-Grafted Hyaluronic Acid by Inclusion Complexation with α-Cyclodextrin. Polymer Journal, 2004, 36, 338-344.	1.3	27
100	Fast Sliding Motions of Supramolecular Assemblies. , 2004, , .		0
101	pH- and Thermosensitive Supramolecular Assembling System:Â Rapidly Responsive Properties of β-Cyclodextrin-Conjugated Poly(ε-lysine). Journal of the American Chemical Society, 2003, 125, 6350-6351.	6.6	102
101 102	pH- and Thermosensitive Supramolecular Assembling System:Â Rapidly Responsive Properties of l²-Cyclodextrin-Conjugated Poly(ε-lysine). Journal of the American Chemical Society, 2003, 125, 6350-6351. Control of Rapid Phase Transition Induced by Supramolecular Complexation of l²-Cyclodextrin-Conjugated Poly(ε-lysine) with a Specific Guest. Macromolecules, 2003, 36, 5342-5347.	6.6 2.2	102 57
101 102 103	pH- and Thermosensitive Supramolecular Assembling System: Rapidly Responsive Properties of I²-Cyclodextrin-Conjugated Poly(ε-lysine). Journal of the American Chemical Society, 2003, 125, 6350-6351.Control of Rapid Phase Transition Induced by Supramolecular Complexation of I²-Cyclodextrin-Conjugated Poly(ε-lysine) with a Specific Guest. Macromolecules, 2003, 36, 5342-5347.Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. Journal of Controlled Release, 2003, 93, 121-127.	6.6 2.2 4.8	102 57 165
101 102 103 104	pH- and Thermosensitive Supramolecular Assembling System: Rapidly Responsive Properties of I2-Cyclodextrin-Conjugated Poly(ε-lysine). Journal of the American Chemical Society, 2003, 125, 6350-6351.Control of Rapid Phase Transition Induced by Supramolecular Complexation of I2-Cyclodextrin-Conjugated Poly(ε-lysine) with a Specific Guest. Macromolecules, 2003, 36, 5342-5347.Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. Journal of Controlled Release, 2003, 93, 121-127.In vitro biocompatibility assessment of sulfonated polyrotaxane-immobilized polyurethane surfaces. Journal of Biomedical Materials Research Part B, 2003, 66A, 596-604.	6.6 2.2 4.8 3.0	102 57 165 22
101 102 103 104	pH- and Thermosensitive Supramolecular Assembling System: Rapidly Responsive Properties of I²-Cyclodextrin-Conjugated Poly(ε-lysine). Journal of the American Chemical Society, 2003, 125, 6350-6351.Control of Rapid Phase Transition Induced by Supramolecular Complexation of β-Cyclodextrin-Conjugated Poly(ε-lysine) with a Specific Guest. Macromolecules, 2003, 36, 5342-5347.Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. Journal of Controlled Release, 2003, 93, 121-127.In vitro biocompatibility assessment of sulfonated polyrotaxane-immobilized polyurethane surfaces. Journal of Biomedical Materials Research Part B, 2003, 66A, 596-604.Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1087-1092.	6.6 2.2 4.8 3.0 2.1	102 57 165 22 70
 101 102 103 104 105 106 	pH- and Thermosensitive Supramolecular Assembling System: Rapidly Responsive Properties of I2-Cyclodextrin-Conjugated Poly(ε-lysine). Journal of the American Chemical Society, 2003, 125, 6350-6351.Control of Rapid Phase Transition Induced by Supramolecular Complexation of I2-Cyclodextrin-Conjugated Poly(ε-lysine) with a Specific Guest. Macromolecules, 2003, 36, 5342-5347.Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. Journal of Controlled Release, 2003, 93, 121-127.In vitro biocompatibility assessment of sulfonated polyrotaxane-immobilized polyurethane surfaces. Journal of Biomedical Materials Research Part B, 2003, 66A, 596-604.Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1087-1092.Supramolecular Control of Ester Hydrolysis in Poly(ethylene glycol)-Interlocked Hydrogels. Macromolecular Bioscience, 2003, 3, 373-380.	 6.6 2.2 4.8 3.0 2.1 2.1 	 102 57 165 22 70 15
 101 102 103 104 105 106 107 	pH- and Thermosensitive Supramolecular Assembling System:Â Rapidly Responsive Properties of P2-Cyclodextrin-Conjugated Poly(lµ-lysine). Journal of the American Chemical Society, 2003, 125, 6350-6351.Control of Rapid Phase Transition Induced by Supramolecular Complexation of I2-Cyclodextrin-Conjugated Poly(lµ-lysine) with a Specific Guest. Macromolecules, 2003, 36, 5342-5347.Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. Journal of Controlled Release, 2003, 93, 121-127.In vitro biocompatibility assessment of sulfonated polyrotaxane-immobilized polyurethane surfaces. Journal of Biomedical Materials Research Part B, 2003, 66A, 596-604.Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1087-1092.Supramolecular Control of Ester Hydrolysis in Poly(ethylene glycol)-Interlocked Hydrogels. Macromolecular Bioscience, 2003, 3, 373-380.Raman scattering study of water clusters around polyrotaxane and pseudopolyrotaxane supramolecular assemblies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2003, 59, 285-289.	 6.6 2.2 4.8 3.0 2.1 2.1 2.1 2.0 	102 57 165 22 70 15

#	Article	IF	CITATIONS
109	Preparation and characterization of plasmid DNA network via both triple helix formation and photo-crosslinking. Science and Technology of Advanced Materials, 2003, 4, 43-46.	2.8	0
110	Preparation and Characterization of Polypseudorotaxanes Based on Biodegradable Poly(l-lactide)/Poly(ethylene glycol) Triblock Copolymers. Macromolecules, 2003, 36, 9313-9318.	2.2	75
111	Thermodynamic Analysis of Inclusion Complexation between α-Cyclodextrin-Based Molecular Tube and Poly(ethylene oxide)-block-poly(tetrahydrofuran)-block-poly(ethylene oxide) Triblock Copolymer. Journal of Physical Chemistry B, 2003, 107, 14-19.	1.2	35
112	Supramolecular Design for Multivalent Interaction:Â Maltose Mobility along Polyrotaxane Enhanced Binding with Concanavalin A. Journal of the American Chemical Society, 2003, 125, 13016-13017.	6.6	214
113	Preparation of porous hydrolyzable polyrotaxane hydrogels and their erosion behavior. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 567-579.	1.9	16
114	Polyrotaxanes: Challenge to Multivalent Binding with Biological Receptors on Cell Surfaces. Materials Science Forum, 2003, 426-432, 3243-3248.	0.3	3
115	Design of Biodegradable Polyrotaxanes for Multivalent Interaction with Biological Systems Kobunshi Ronbunshu, 2002, 59, 734-741.	0.2	4
116	Inhibitory Effect of Supramolecular Polyrotaxaneâ´'Dipeptide Conjugates on Digested Peptide Uptake via Intestinal Human Peptide Transporter. Bioconjugate Chemistry, 2002, 13, 582-587.	1.8	48
117	Synthesis and characterization of nitric oxide generative polyrotaxane. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 1153-1161.	1.9	5
118	Multivalent interactions between biotin–polyrotaxane conjugates and streptavidin as a model of new targeting for transporters. Journal of Controlled Release, 2002, 80, 219-228.	4.8	68
119	Synthesis of α-Cyclodextrin-Conjugated Poly(ɛ-lysine)s and Their Inclusion Complexation Behavior. Macromolecular Rapid Communications, 2002, 23, 179-182.	2.0	36
120	Enzymatic Degradation of Semi-IPN Hydrogels Based on N-Isopropylacrylamide and Dextran at a Specific Temperature Range. Macromolecular Rapid Communications, 2002, 23, 407.	2.0	25
121	Self-assembled plasmid DNA network prepared through both triple-helix formation and streptavidin $\hat{a} \in \hat{b}$ iotin interaction. Macromolecular Bioscience, 2002, 2, 195.	2.1	6
122	Rapid induction of thermoreversible hydrogel formation based on poly(propylene glycol)-grafted dextran inclusion complexes. Macromolecular Bioscience, 2002, 2, 298-303.	2.1	65
123	Anticoagulant activity of sulfonated polyrotaxanes as blood-compatible materials. Journal of Biomedical Materials Research Part B, 2002, 60, 186-190.	3.0	54
124	Carboxyethylester-polyrotaxanes as a new calcium chelating polymer: synthesis, calcium binding and mechanism of trypsin inhibition. International Journal of Pharmaceutics, 2002, 242, 47-54.	2.6	54
125	Fibroblast adhesion and proliferation on poly(ethylene glycol) hydrogels crosslinked by hydrolyzable polyrotaxane. Biomaterials, 2002, 23, 4041-4048.	5.7	43
126	pH Dependence of Inclusion Complexation between Cationic Poly(Îμ-lysine) and α-Cyclodextrin. Macromolecules, 2002, 35, 3775-3777.	2.2	60

#	Article	IF	CITATIONS
127	Biodegradable Polymers. , 2002, , .		2
128	Supramolecular-Structured Hydrogels Showing a Reversible Phase Transition by Inclusion Complexation between Poly(ethylene glycol) Grafted Dextran and α-Cyclodextrin. Macromolecules, 2001, 34, 8657-8662.	2.2	204
129	Controllable Erosion Time and Profile in Poly(ethylene glycol) Hydrogels by Supramolecular Structure of Hydrolyzable Polyrotaxane. Biomacromolecules, 2001, 2, 204-210.	2.6	101
130	Thermodynamic Analysis of Inclusion Complexation between α-Cyclodextrin-Based Molecular Tube and Sodium Alkyl Sulfonate. Langmuir, 2001, 17, 234-238.	1.6	43
131	Modulatory Factors on Temperature-Synchronized Degradation of Dextran Grafted with Thermoresponsive Polymers and Their Hydrogels. Biomacromolecules, 2001, 2, 874-879.	2.6	43
132	Enhanced Accessibility of Peptide Substrate toward Membrane-Bound Metalloexopeptidase by Supramolecular Structure of Polyrotaxane. Biomacromolecules, 2001, 2, 200-203.	2.6	47
133	Transience in polyion complexation between nicotinamide-modified dextran and carboxymethyl dextran during enzymatic degradation of dextran. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 1109-1122.	1.9	4
134	New Synthetic Route for Dextran Graft Copolymers Containing Thermo-Responsive Polymers. Polymer Journal, 2001, 33, 108-111.	1.3	23
135	Synthesis of polyrotaxane-biotin conjugates and surface plasmon resonance analysis of streptavidin recognition. Biotechnology and Bioprocess Engineering, 2001, 6, 293-300.	1.4	19
136	Study on the Solution Properties of Thermo-Responsive Polyrotaxanes with Different Numbers of Cyclic Molecules. Macromolecular Chemistry and Physics, 2001, 202, 1338-1344.	1.1	30
137	Polymer Inclusion Complex Consisting of Poly(ε-lysine) and α-Cyclodextrin. Macromolecules, 2001, 34, 2402-2404.	2.2	126
138	Synthesis and characterization of dextran grafted with poly(N-isopropylacrylamide-co-N,N-dimethyl-acrylamide). Macromolecular Chemistry and Physics, 2000, 201, 613-619.	1.1	55
139	Supramolecular network formation through inclusion complexation of an α-cyclodextrin-based molecular tube. Macromolecular Rapid Communications, 2000, 21, 1257-1262.	2.0	47
140	Synthesis and characterization of an oligopeptide - terminated polyrotaxane as a drug carrier. Polymers for Advanced Technologies, 2000, 11, 642-651.	1.6	55
141	Inclusion complexation of fractionated ?-cyclodextrin molecular tube with sodium dodecyl sulfate. Polymers for Advanced Technologies, 2000, 11, 830-836.	1.6	19
142	Feasibility study of hydrolyzable polyrotaxanes aiming at implantable materials. Journal of Artificial Organs, 2000, 3, 136-142.	0.4	25
143	Supramolecular-Structured Polymers for Drug Delivery. ACS Symposium Series, 2000, , 375-384.	0.5	1
144	Self-complex formation of nicotinamide-modified dextran with carboxymethyl dextran using their degradation products. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 747-765.	1.9	2

#	Article	IF	CITATIONS
145	Preparation and characterization of poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 1333-1345.	1.9	37
146	Supramolecular network formation through inclusion complexation of an $\hat{1}\pm$ -cyclodextrin-based molecular tube. , 2000, 21, 1257.		1
147	Polymeric Functions as Determined from Supramolecular-Structured Cyclodextrins. Journal of Japan Oil Chemists' Society, 2000, 49, 471-478,514.	0.3	0
148	Regulation of pseudo-Polyrotaxane Formation between α-Cyclodextrins and Azobenzene-Terminated Poly(ethylene glycol). Polymer Journal, 1999, 31, 658-663.	1.3	36
149	Pulsatile peptide release from multi-layered hydrogel formulations consisting of poly(ethylene) Tj ETQq1 1 0.7843 1251-1264.	14 rgBT /C 1.9	Overlock 10 16
150	Synthesis of theophylline–polyrotaxane conjugates and their drug release via supramolecular dissociation. Journal of Controlled Release, 1999, 58, 251-269.	4.8	113
151	Hyaluronic acid grafted with poly(ethylene glycol) as a novel peptide formulation. Journal of Controlled Release, 1999, 59, 77-86.	4.8	61
152	Synthesis and characterization of a polyrotaxane consisting of \hat{I}^2 -cyclodextrins and a poly(ethylene) Tj ETQq0 0 0 r 706-713.	gBT /Over 1.1	lock 10 Tf 5 80
153	Thermally Induced Localization of Cyclodextrins in a Polyrotaxane Consisting of β-Cyclodextrins and Poly(ethylene glycol)â^'Poly(propylene glycol) Triblock Copolymer. Macromolecules, 1999, 32, 2534-2541.	2.2	200
154	Effect of acetylation of biodegradable polyrotaxanes on its supramolecular dissociation via terminal ester hydrolysis. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 1275-1288.	1.9	38
155	Thermally-Responsive Properties of a Polyrotaxane Consisting of \hat{I}^2 -Cyclodextrins and a Poly(ethylene) Tj ETQq1 1	0,784314 1.3	rgBT /Over
156	Synthesis and characterization of a polyrotaxane consisting of β-cyclodextrins and a poly(ethylene) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf S
157	Polyrotaxanes: Synthesis, Structure, and Potential in Drug Delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 1999, 16, 289-330.	1.2	52
158	Supramolecular dissociation of biodegradable polyrotaxanes by enzymatic terminal hydrolysis. Macromolecular Chemistry and Physics, 1998, 199, 2311-2320.	1.1	65
159	Effect of Biodegradable Polyrotaxanes on Platelet Activation. Bioconjugate Chemistry, 1998, 9, 118-125.	1.8	74
160	Regulation of intracellular metabolism by biodegradable polyrotaxanes. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 313-326.	1.9	8
161	Preparation and Characterization of a Polyrotaxane with Non-enzymatically Hydrolyzable Stoppers. Chemistry Letters, 1998, 27, 1031-1032.	0.7	37
162	Synthesis and characterization of biodegradable polyrotaxane as a novel supramolecular-structured drug carrier. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 437-455.	1.9	71

#	Article	IF	CITATIONS
163	Interaction of supramolecular assembly with hairless rat stratum corneum. Journal of Controlled Release, 1997, 44, 295-299.	4.8	17
164	Interaction of supramolecular-structured polyrotaxanes with hairless rat stratum corneum and its effect on indomethacin permeation Drug Delivery System, 1997, 12, 89-94.	0.0	2
165	Thermally switchable polyrotaxane as a model of stimuli-responsive supramolecules for nano-scale devices. Macromolecular Rapid Communications, 1996, 17, 509-515.	2.0	71
166	Novel Design of Supramolecular-Structured Biodegradable Polymer for Drug Delivery. , 1996, , 333-334.		6
167	Synthesis of a biodegradable polymeric supramolecular assembly for drug delivery. Macromolecular Rapid Communications, 1995, 16, 259-263.	2.0	81
168	Solution Properties: Networks, Micelles, Dendrimers, and Hydrogels. , 0, , 7500-7511.		0