Tooru Ooya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1324833/publications.pdf

Version: 2024-02-01

46918 85405 5,991 168 47 71 citations h-index g-index papers 172 172 172 3668 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biocleavable Polyrotaxaneâ^'Plasmid DNA Polyplex for Enhanced Gene Delivery. Journal of the American Chemical Society, 2006, 128, 3852-3853.	6.6	260
2	Supramolecular Design for Multivalent Interaction:Â Maltose Mobility along Polyrotaxane Enhanced Binding with Concanavalin A. Journal of the American Chemical Society, 2003, 125, 13016-13017.	6.6	214
3	Supramolecular-Structured Hydrogels Showing a Reversible Phase Transition by Inclusion Complexation between Poly(ethylene glycol) Grafted Dextran and α-Cyclodextrin. Macromolecules, 2001, 34, 8657-8662.	2.2	204
4	Thermally Induced Localization of Cyclodextrins in a Polyrotaxane Consisting of \hat{l}^2 -Cyclodextrins and Poly(ethylene glycol) \hat{a}^2 Poly(propylene glycol) Triblock Copolymer. Macromolecules, 1999, 32, 2534-2541.	2.2	200
5	Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. Journal of Controlled Release, 2003, 93, 121-127.	4.8	165
6	Molecular Mobility of Interlocked Structures Exploiting New Functions of Advanced Biomaterials. Chemistry - A European Journal, 2006, 12, 6730-6737.	1.7	138
7	Polymer Inclusion Complex Consisting of Poly(Îμ-lysine) and α-Cyclodextrin. Macromolecules, 2001, 34, 2402-2404.	2.2	126
8	Hydrotropic Dendrimers of Generations 4 and 5:  Synthesis, Characterization, and Hydrotropic Solubilization of Paclitaxel. Bioconjugate Chemistry, 2004, 15, 1221-1229.	1.8	122
9	Supramolecular Hydrogel Formation Based on Inclusion Complexation Between Poly(ethylene) Tj ETQq1 1 0.7843	314 rgBT 2.1	Oyerlock 10
10	Synthesis of theophylline–polyrotaxane conjugates and their drug release via supramolecular dissociation. Journal of Controlled Release, 1999, 58, 251-269.	4.8	113
11	pH-Responsive Movement of Cucurbit[7]uril in a Diblock Polypseudorotaxane Containing Dimethyl ¹² -Cyclodextrin and Cucurbit[7]uril. Organic Letters, 2006, 8, 3159-3162.	2.4	110
12	pH- and Thermosensitive Supramolecular Assembling System: Â Rapidly Responsive Properties of 12 -Cyclodextrin-Conjugated Poly (1 -lysine). Journal of the American Chemical Society, 2003, 125, 6350-6351.	6.6	102
13	Controllable Erosion Time and Profile in Poly(ethylene glycol) Hydrogels by Supramolecular Structure of Hydrolyzable Polyrotaxane. Biomacromolecules, 2001, 2, 204-210.	2.6	101
14	Rapid Binding of Concanavalin A and Maltoseâ^Polyrotaxane Conjugates Due to Mobile Motion of α-Cyclodextrins Threaded onto a Poly(ethylene glycol). Bioconjugate Chemistry, 2005, 16, 62-69.	1.8	84
15	Synthesis of a biodegradable polymeric supramolecular assembly for drug delivery. Macromolecular Rapid Communications, 1995, 16, 259-263.	2.0	81
16	Synthesis and characterization of a polyrotaxane consisting of \hat{l}^2 -cyclodextrins and a poly(ethylene) Tj ETQq0 0 0 706-713.	rgBT /Ov 1.1	verlock 10 Tf 5 80
17	pH Dependence of Polypseudorotaxane Formation between Cationic Linear Polyethylenimine and Cyclodextrins. Macromolecules, 2004, 37, 6705-6710.	2.2	76
18	Preparation and Characterization of Polypseudorotaxanes Based on Biodegradable Poly(I-lactide)/Poly(ethylene glycol) Triblock Copolymers. Macromolecules, 2003, 36, 9313-9318.	2.2	75

#	Article	IF	Citations
19	Effect of Biodegradable Polyrotaxanes on Platelet Activation. Bioconjugate Chemistry, 1998, 9, 118-125.	1.8	74
20	Thermally switchable polyrotaxane as a model of stimuli-responsive supramolecules for nano-scale devices. Macromolecular Rapid Communications, 1996, 17, 509-515.	2.0	71
21	Synthesis and characterization of biodegradable polyrotaxane as a novel supramolecular-structured drug carrier. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 437-455.	1.9	71
22	Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1087-1092.	2.1	70
23	Multivalent interactions between biotin–polyrotaxane conjugates and streptavidin as a model of new targeting for transporters. Journal of Controlled Release, 2002, 80, 219-228.	4.8	68
24	Synthesis, Characterization, and pH-Triggered Dethreading of α-Cyclodextrin-Poly(ethylene glycol) Polyrotaxanes Bearing Cleavable Endcaps. Biomacromolecules, 2006, 7, 2501-2506.	2.6	68
25	Fluorescent protein recognition polymer thin films capable of selective signal transduction of target binding events prepared by molecular imprinting with a post-imprinting treatment. Biosensors and Bioelectronics, 2010, 26, 458-462.	5.3	67
26	Fluorescent protein-imprinted polymers capable of signal transduction of specific binding events prepared by a site-directed two-step post-imprinting modification. Chemical Communications, 2014, 50, 1347-1349.	2.2	66
27	Supramolecular dissociation of biodegradable polyrotaxanes by enzymatic terminal hydrolysis. Macromolecular Chemistry and Physics, 1998, 199, 2311-2320.	1.1	65
28	Rapid induction of thermoreversible hydrogel formation based on poly(propylene glycol)-grafted dextran inclusion complexes. Macromolecular Bioscience, 2002, 2, 298-303.	2.1	65
29	Supramolecular control of polyplex dissociation and cell transfection: Efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes. Journal of Controlled Release, 2008, 131, 137-144.	4.8	64
30	Block-Selective Polypseudorotaxane Formation in PEI-b-PEG-b-PEI Copolymers via pH Variation. Macromolecules, 2004, 37, 7464-7468.	2.2	63
31	Conjugatedâ€Protein Mimics with Molecularly Imprinted Reconstructible and Transformable Regions that are Assembled Using Spaceâ€Filling Prosthetic Groups. Angewandte Chemie - International Edition, 2014, 53, 12765-12770.	7.2	62
32	Hyaluronic acid grafted with poly(ethylene glycol) as a novel peptide formulation. Journal of Controlled Release, 1999, 59, 77-86.	4.8	61
33	pH Dependence of Inclusion Complexation between Cationic Poly(Îμ-lysine) and α-Cyclodextrin. Macromolecules, 2002, 35, 3775-3777.	2.2	60
34	Synthesis of a biocleavable polyrotaxane-plasmid DNA (pDNA) polyplex and its use for the rapid nonviral delivery of pDNA to cell nuclei. Nature Protocols, 2006, 1, 2861-2869.	5.5	59
35	Fluorescent molecularly imprinted polymer thin films for specific protein detection prepared with dansyl ethylenediamine-conjugated O-acryloyl l-hydroxyproline. Biosensors and Bioelectronics, 2013, 48, 113-119.	5.3	59
36	Molecularly imprinted polymers prepared using protein-conjugated cleavable monomers followed by site-specific post-imprinting introduction of fluorescent reporter molecules. Chemical Communications, 2013, 49, 8450.	2.2	58

#	Article	IF	Citations
37	Control of Rapid Phase Transition Induced by Supramolecular Complexation of β-Cyclodextrin-Conjugated Poly(ε-lysine) with a Specific Guest. Macromolecules, 2003, 36, 5342-5347.	2.2	57
38	Synthesis and characterization of dextran grafted with poly(N-isopropylacrylamide-co-N,N-dimethyl-acrylamide). Macromolecular Chemistry and Physics, 2000, 201, 613-619.	1.1	55
39	Synthesis and characterization of an oligopeptide - terminated polyrotaxane as a drug carrier. Polymers for Advanced Technologies, 2000, 11, 642-651.	1.6	55
40	Anticoagulant activity of sulfonated polyrotaxanes as blood-compatible materials. Journal of Biomedical Materials Research Part B, 2002, 60, 186-190.	3.0	54
41	Carboxyethylester-polyrotaxanes as a new calcium chelating polymer: synthesis, calcium binding and mechanism of trypsin inhibition. International Journal of Pharmaceutics, 2002, 242, 47-54.	2.6	54
42	Synthesis of Poly(É>-lysine)-Grafted Dextrans and Their pH- and Thermosensitive Hydrogelation with Cyclodextrins. ChemPhysChem, 2005, 6, 1081-1086.	1.0	52
43	Polyrotaxanes: Synthesis, Structure, and Potential in Drug Delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 1999, 16, 289-330.	1.2	52
44	Precisely controlled molecular imprinting of glutathione-s-transferase by orientated template immobilization using specific interaction with an anchored ligand on a gold substrate. Polymer Chemistry, 2014, 5, 4764-4771.	1,9	50
45	Preparation ofl±-Cyclodextrin-Terminated Polyrotaxane Consisting ofl²-Cyclodextrins and Pluronic as a Building Block of a Biodegradable Network. Macromolecular Bioscience, 2005, 5, 379-383.	2.1	49
46	Inhibitory Effect of Supramolecular Polyrotaxaneâ^'Dipeptide Conjugates on Digested Peptide Uptake via Intestinal Human Peptide Transporter. Bioconjugate Chemistry, 2002, 13, 582-587.	1.8	48
47	Supramolecular network formation through inclusion complexation of an α-cyclodextrin-based molecular tube. Macromolecular Rapid Communications, 2000, 21, 1257-1262.	2.0	47
48	Enhanced Accessibility of Peptide Substrate toward Membrane-Bound Metalloexopeptidase by Supramolecular Structure of Polyrotaxane. Biomacromolecules, 2001, 2, 200-203.	2.6	47
49	Highly selective bisphenol A—imprinted polymers prepared by atom transfer radical polymerization. Polymer Chemistry, 2010, 1, 1684.	1.9	47
50	Thermodynamic Analysis of Inclusion Complexation between \hat{l}_{\pm} -Cyclodextrin-Based Molecular Tube and Sodium Alkyl Sulfonate. Langmuir, 2001, 17, 234-238.	1.6	43
51	Modulatory Factors on Temperature-Synchronized Degradation of Dextran Grafted with Thermoresponsive Polymers and Their Hydrogels. Biomacromolecules, 2001, 2, 874-879.	2.6	43
52	Fibroblast adhesion and proliferation on poly(ethylene glycol) hydrogels crosslinked by hydrolyzable polyrotaxane. Biomaterials, 2002, 23, 4041-4048.	5.7	43
53	Improved Cell Viability of Linear Polyethylenimine through Î ³ -Cyclodextrin Inclusion for Effective Gene Delivery. ChemBioChem, 2006, 7, 297-302.	1.3	42
54	Controlling the mechanism of trypsin inhibition by the numbers of \hat{l}_{\pm} -cyclodextrins and carboxyl groups in carboxyethylester-polyrotaxanes. Journal of Controlled Release, 2004, 96, 301-307.	4.8	41

#	Article	IF	Citations
55	Label-free detection of C-reactive protein using reflectometric interference spectroscopy-based sensing system. Analytica Chimica Acta, 2012, 728, 64-68.	2.6	40
56	Effect of acetylation of biodegradable polyrotaxanes on its supramolecular dissociation via terminal ester hydrolysis. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 1275-1288.	1.9	38
57	Modulating Rheological Properties of Supramolecular Networks by pH-Responsive Double-Axle Intrusion into Î ³ -Cyclodextrin. Advanced Materials, 2007, 19, 396-400.	11.1	38
58	Preparation and Characterization of a Polyrotaxane with Non-enzymatically Hydrolyzable Stoppers. Chemistry Letters, 1998, 27, 1031-1032.	0.7	37
59	Preparation and characterization of poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 1333-1345.	1.9	37
60	One-Pot Synthesis of a Polyrotaxane via Selective Threading of a PEI-b-PEG-b-PEI Copolymer. Macromolecular Bioscience, 2006, 6, 420-424.	2.1	37
61	Molecular "Screw and Nut―  α-Cyclodextrin Recognizes Polylactide Chirality. Macromolecules, 2007, 40, 6441-6444.	2.2	37
62	Regulation of pseudo-Polyrotaxane Formation between α-Cyclodextrins and Azobenzene-Terminated Poly(ethylene glycol). Polymer Journal, 1999, 31, 658-663.	1.3	36
63	Synthesis of α-Cyclodextrin-Conjugated Poly(É>-lysine)s and Their Inclusion Complexation Behavior. Macromolecular Rapid Communications, 2002, 23, 179-182.	2.0	36
64	Molecularly imprinted protein recognition thin films constructed by controlled/living radical polymerization. Journal of Bioscience and Bioengineering, 2015, 119, 200-205.	1.1	36
65	Thermodynamic Analysis of Inclusion Complexation between α-Cyclodextrin-Based Molecular Tube and Poly(ethylene oxide)-block-poly(tetrahydrofuran)-block-poly(ethylene oxide) Triblock Copolymer. Journal of Physical Chemistry B, 2003, 107, 14-19.	1.2	35
66	Study on the Solution Properties of Thermo-Responsive Polyrotaxanes with Different Numbers of Cyclic Molecules. Macromolecular Chemistry and Physics, 2001, 202, 1338-1344.	1.1	30
67	Self-assembly of cholesterol-hydrotropic dendrimer conjugates into micelle-like structure: Preparation and hydrotropic solubilization of paclitaxel. Science and Technology of Advanced Materials, 2005, 6, 452-456.	2.8	29
68	Cationic hydrogels of PEG crosslinked by a hydrolyzable polyrotaxane for cartilage regeneration. Reactive and Functional Polymers, 2007, 67, 1408-1417.	2.0	29
69	Temperature- and pH-Controlled Hydrogelation of Poly(ethylene glycol)-Grafted Hyaluronic Acid by Inclusion Complexation with α-Cyclodextrin. Polymer Journal, 2004, 36, 338-344.	1.3	27
70	Fabrication of Carboxylated Silicon Nitride Sensor Chips for Detection of Antigen–Antibody Reaction Using Microfluidic Reflectometric Interference Spectroscopy. Langmuir, 2012, 28, 13609-13615.	1.6	27
71	Thermally-Responsive Properties of a Polyrotaxane Consisting of β-Cyclodextrins and a Poly(ethylene) Tj ETQq1 1	. 0,784314 1.3	4 rgBT /Over
72	Supraparticles comprised of molecularly imprinted nanoparticles and modified gold nanoparticles as a nanosensor platform. RSC Advances, 2013, 3, 25306.	1.7	26

#	Article	IF	CITATIONS
73	Feasibility study of hydrolyzable polyrotaxanes aiming at implantable materials. Journal of Artificial Organs, 2000, 3, 136-142.	0.4	25
74	Enzymatic Degradation of Semi-IPN Hydrogels Based on N-Isopropylacrylamide and Dextran at a Specific Temperature Range. Macromolecular Rapid Communications, 2002, 23, 407.	2.0	25
75	Spontaneous Change of Physical State from Hydrogels to Crystalline Precipitates during Poly-pseudorotaxane Formation. ChemPhysChem, 2004, 5, 1431-1434.	1.0	25
76	Dextran Hydrogels Containing Poly(N-isopropylacrylamide) as Grafts and Cross-Linkers Exhibiting Enzymatic Regulation in a Specific Temperature Range. Macromolecular Rapid Communications, 2004, 25, 867-872.	2.0	25
77	Protein imprinted TiO2-coated quantum dots for fluorescent protein sensing prepared by liquid phase deposition. Soft Matter, 2011, 7, 9681.	1.2	25
78	Effects of polyrotaxane structure on polyion complexation with DNA. Science and Technology of Advanced Materials, 2004, 5, 363-369.	2.8	24
79	Effect of the Mobility of Ligands in Polyrotaxanes on Order Structure of Water Clusters. Langmuir, 2004, 20, 2852-2854.	1.6	24
80	New Synthetic Route for Dextran Graft Copolymers Containing Thermo-Responsive Polymers. Polymer Journal, 2001, 33, 108-111.	1.3	23
81	Sunflower-Shaped Cyclodextrin-Conjugated Poly($\hat{l}\mu$ -Lysine) Polyplex as a Controlled Intracellular Trafficking Device. ChemBioChem, 2005, 6, 1986-1990.	1.3	23
82	Surface modification of polyurethane using sulfonated PEG crafted polyrotaxane for improved biocompatibility. Macromolecular Research, 2006, 14, 73-80.	1.0	23
83	Hydrophilic molecularly imprinted polymers for bisphenol A prepared in aqueous solution. Mikrochimica Acta, 2013, 180, 1387-1392.	2.5	23
84	In vitro biocompatibility assessment of sulfonated polyrotaxane-immobilized polyurethane surfaces. Journal of Biomedical Materials Research Part B, 2003, 66A, 596-604.	3.0	22
85	Novel biodegradable cholesterol-modified polyrotaxane hydrogels for cartilage regeneration. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1389-1404.	1.9	20
86	Anticoagulant supramolecular-structured polymers: Synthesis and anti coagulant activity of taurine-conjugated carboxyethylester-polyrotaxanes. Science and Technology of Advanced Materials, 2005, 6, 484-490.	2.8	20
87	Dummy Template-Imprinted Polymers for Bisphenol A Prepared Using a Schiff Base-Type Template Molecule with Post-Imprinting Oxidation. Analytical Letters, 2012, 45, 1204-1213.	1.0	20
88	Inclusion complexation of fractionated ?-cyclodextrin molecular tube with sodium dodecyl sulfate. Polymers for Advanced Technologies, 2000, 11, 830-836.	1.6	19
89	Synthesis of polyrotaxane-biotin conjugates and surface plasmon resonance analysis of streptavidin recognition. Biotechnology and Bioprocess Engineering, 2001, 6, 293-300.	1.4	19
90	pH-Sensitive Locomotion of Cyclodextrins in a Block–Selective Mobile Polyrotaxane. ChemPhysChem, 2006, 7, 1671-1673.	1.0	19

#	Article	IF	CITATIONS
91	¹⁹ F-NMR, ¹ H-NMR, and Fluorescence Studies of Interaction between 5-Fluorouracil and Polyglycerol Dendrimers. Journal of Physical Chemistry B, 2012, 116, 12263-12267.	1.2	18
92	Interaction of supramolecular assembly with hairless rat stratum corneum. Journal of Controlled Release, 1997, 44, 295-299.	4.8	17
93	pH-Triggered Assembling System Using Cooperative Binding between Cyclodextrin-Conjugated Poly(ε-lysine)s and Anionic Guest in Aqueous Media. Journal of Physical Chemistry B, 2004, 108, 7646-7650.	1.2	17
94	Label-free detection of glycoproteins using reflectometric interference spectroscopy-based sensing system with upright episcopic illumination. Analytical Methods, 2011, 3, 1366.	1.3	17
95	An injectable and self-healing hydrogel for spatiotemporal protein release via fragmentation after passing through needles. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 145-159.	1.9	17
96	Hydrophobic Nature of Methacrylate-POSS in Combination with 2-(Methacryloyloxy)ethyl Phosphorylcholine for Enhanced Solubility and Controlled Release of Paclitaxel. Langmuir, 2019, 35, 1404-1412.	1.6	17
97	Pulsatile peptide release from multi-layered hydrogel formulations consisting of poly(ethylene) Tj ETQq1 1 0.7843 1251-1264.	14 rgBT /(1.9	Overlock 10 16
98	Preparation of porous hydrolyzable polyrotaxane hydrogels and their erosion behavior. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 567-579.	1.9	16
99	Cellâ€Encapsulating Hydrogel Puzzle: Polyrotaxaneâ€Based Selfâ€Healing Hydrogels. Chemistry - A European Journal, 2020, 26, 913-920.	1.7	16
100	Supramolecular Control of Ester Hydrolysis in Poly(ethylene glycol)-Interlocked Hydrogels. Macromolecular Bioscience, 2003, 3, 373-380.	2.1	15
101	Sulfonated poly(ethylene glycol) containing methacrylate copolymer surfaces; preparation, characterization andin vitro biocompatibility. Macromolecular Research, 2004, 12, 342-351.	1.0	15
102	Poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane containing hydroxyapatite particles as scaffolds for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1611-1621.	1.9	15
103	Temperature-controlled erosion of poly(N-isopropylacrylamide)-based hydrogels crosslinked by methacrylate-introduced hydrolyzable polyrotaxane. Science and Technology of Advanced Materials, 2005, 6, 447-451.	2.8	14
104	Microfluidic reflectometric interference spectroscopy-based sensing for exploration of protein–protein interaction conditions. Biosensors and Bioelectronics, 2013, 40, 247-251.	5. 3	14
105	Reflectometric interference spectroscopy-based immunosensing using immobilized antibody via His-tagged recombinant protein A. Journal of Bioscience and Bioengineering, 2015, 119, 195-199.	1.1	13
106	Structural Role of Guest Molecules in Rapid and Sensitive Supramolecular Assembling System Based on \hat{l}^2 -Cyclodextrin-Conjugated Poly($\hat{l}\mu$ -lysine). Macromolecules, 2004, 37, 10036-10041.	2.2	12
107	Simple immobilization of antibody in organic/inorganic hybrid thin films for immunosensing. Biosensors and Bioelectronics, 2013, 43, 45-49.	5.3	12
108	Conjugatedâ€Protein Mimics with Molecularly Imprinted Reconstructible and Transformable Regions that are Assembled Using Spaceâ€Filling Prosthetic Groups. Angewandte Chemie, 2014, 126, 12979-12984.	1.6	12

#	Article	IF	Citations
109	Gelation Rate Modulation of anl±-Cyclodextrin and Poly(ethylene glycol)-Grafted Hyaluronic Acid Solution System by Inclusion Complexation of a Microphase-Separated Structure. Macromolecular Rapid Communications, 2004, 25, 739-742.	2.0	11
110	Molecularly Imprinted Microspheres for Bisphenol A Prepared Using a Microfluidic Device. Analytical Sciences, 2012, 28, 457-461.	0.8	11
111	Enhanced solubilization of \hat{l} ±-tocopherol by hyperbranched polyglycerol-modified \hat{l}^2 -cyclodextin. Journal of Drug Delivery Science and Technology, 2016, 35, 30-33.	1.4	11
112	Controlled Micelle Formation and Stable Capture of Hydrophobic Drug by Alkylated POSS Methacrylate Block Copolymers. ACS Applied Polymer Materials, 2019, 1, 2108-2119.	2.0	11
113	Tuned cell attachments by double-network hydrogels consisting of glycol chitosan, carboxylmethyl cellulose and agar bearing robust and self-healing properties. International Journal of Biological Macromolecules, 2019, 134, 262-268.	3.6	11
114	Design of polyrotaxanes as supramolecular conjugates for cells and tissues. Journal of Artificial Organs, 2004, 7, 62-8.	0.4	9
115	Providing Natural Water Structure Surrounding Highly Mobile Maltose Groups Conjugated with Polyrotaxanes. Polymer Journal, 2006, 38, 1093-1097.	1.3	9
116	Regulation of intracellular metabolism by biodegradable polyrotaxanes. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 313-326.	1.9	8
117	Dendritic nanospace constructed by only glycerol units enhanced uptake of a fluorescent molecule in aqueous solution. Chemical Communications, 2012, 48, 546-548.	2.2	8
118	Generationâ€Dependent Host–Guest Interactions: Solution States of Polyglycerol Dendrimers of Generations 3 and 4 Modulate the Localization of a Guest Molecule. Chemistry - A European Journal, 2012, 18, 10624-10629.	1.7	8
119	Two-layer reflectometric interference spectroscopy-based immunosensing for C-reactive protein. Mikrochimica Acta, 2015, 182, 307-313.	2.5	8
120	Hydrophilic crosslinked-polymeric surface capable of effective suppression of protein adsorption. Applied Surface Science, 2016, 378, 467-472.	3.1	8
121	Tuned Surface and Mechanical Properties of Polymeric Film Prepared by Random Copolymers Consisting of Methacrylateâ€POSS and 2â€(Methacryloyloxy)ethyl Phosphorylcholine. Macromolecular Chemistry and Physics, 2018, 219, 1700572.	1.1	8
122	Hydrotropic Nanocarriers for Poorly Soluble Drugs. , 2006, , 51-73.		8
123	Raman scattering study of water clusters around polyrotaxane and pseudopolyrotaxane supramolecular assemblies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2003, 59, 285-289.	2.0	7
124	Preparation of polypseudorotaxane consisting of fluorescent molecule-modified \hat{l}^2 -cyclodextrins and biotin-terminated poly(propylene glycol) with high yield. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 233-236.	1.6	7
125	Reflectometric interference spectroscopy-based sensing for evaluating biodegradability of polymeric thin films. Acta Biomaterialia, 2016, 38, 163-167.	4.1	7
126	Copolymers Composed of 2-(Methacryloyloxy)ethyl Phosphorylcholine and Methacrylated Polyhedral Oligomeric Silsesquioxane as a Simple Modifier for Liposomes. ACS Applied Polymer Materials, 2020, 2, 1909-1916.	2.0	7

#	Article	IF	Citations
127	Development of endodontic sealers containing antimicrobial-loaded polymer particles with long-term antibacterial effects. Dental Materials, 2021, 37, 1248-1259.	1.6	7
128	Size Dependency of Selective Cellular Uptake of Epigallocatechin Gallate-modified Gold Nanoparticles for Effective Radiosensitization. ACS Applied Bio Materials, 2022, 5, 355-365.	2.3	7
129	Self-assembled plasmid DNA network prepared through both triple-helix formation and streptavidin–biotin interaction. Macromolecular Bioscience, 2002, 2, 195.	2.1	6
130	Hydrogels having tubular α-cyclodextrin structure: effect of nano-tube structure on long alkyl chain partitions. Science and Technology of Advanced Materials, 2003, 4, 39-42.	2.8	6
131	1H NMR titration study of stimuli-responsive supramolecular assemblies: inclusion complexes between PEG–b-PEI copolymer-grafted dextran and naphthalene-appended γ-cyclodextrin via double-strand inclusion. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 323-328.	1.6	6
132	Crosslinked Network with Rotatable Binding Sites Based on Monocarboxylated α yclodextrin [2]Rotaxane Capable of Angiotensinâ€III Recognition. Chemistry - A European Journal, 2017, 23, 4708-4712.	1.7	6
133	Temperature-induced recovery of a bioactive enzyme using polyglycerol dendrimers: correlation between bound water and protein interaction. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 701-715.	1.9	6
134	Novel Design of Supramolecular-Structured Biodegradable Polymer for Drug Delivery., 1996,, 333-334.		6
135	Synthesis and characterization of nitric oxide generative polyrotaxane. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 1153-1161.	1.9	5
136	Molecular-Recognition and Binding Properties of Cyclodextrin-Conjugated Polyrotaxanes. ChemPhysChem, 2006, 7, 1668-1670.	1.0	5
137	Effect of tethered sheet-like motif and asymmetric topology on hydrogelation of star-shaped block copolypeptides. Polymer, 2022, 250, 124864.	1.8	5
138	Transience in polyion complexation between nicotinamide-modified dextran and carboxymethyl dextran during enzymatic degradation of dextran. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 1109-1122.	1.9	4
139	Design of Biodegradable Polyrotaxanes for Multivalent Interaction with Biological Systems Kobunshi Ronbunshu, 2002, 59, 734-741.	0.2	4
140	Effect of polymer adsorption on the water structure at the quartz/water interface studied by optical sum frequency generation. Surface Science, 2007, 601, 5173-5179.	0.8	4
141	Amino Acidâ€Dependent Host–Guest Interaction: Polyglycerol Dendrimer of Generation 3 Encapsulates Amino Acids Bearing Two Amino Groups. ChemNanoMat, 2015, 1, 264-269.	1.5	4
142	A Supramolecular Hydrogel Based on Polyglycerol Dendrimerâ€Specific Amino Group Recognition. Chemistry - an Asian Journal, 2018, 13, 1688-1691.	1.7	4
143	Combined Treatment with Ultrasound and Immune Checkpoint Inhibitors for Prostate Cancer. Journal of Clinical Medicine, 2022, 11, 2448.	1.0	4
144	Polyrotaxanes: Challenge to Multivalent Binding with Biological Receptors on Cell Surfaces. Materials Science Forum, 2003, 426-432, 3243-3248.	0.3	3

#	Article	IF	Citations
145	Molecularly Imprinted Polymers for Catechin Recognition Prepared Using Dummy-Template Molecules. Chromatography, 2014, 35, 139-145.	0.8	3
146	Amphiphilic Polymerizable Porphyrins Conjugated to a Polyglycerol Dendron Moiety as Functional Surfactants for Multifunctional Polymer Particles. Langmuir, 2015, 31, 12903-12910.	1.6	3
147	Amphiphilic Copolymer of Polyhedral Oligomeric Silsesquioxane (POSS) Methacrylate for Solid Dispersion of Paclitaxel. Materials, 2019, 12, 1058.	1.3	3
148	Self-complex formation of nicotinamide-modified dextran with carboxymethyl dextran using their degradation products. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 747-765.	1.9	2
149	Synthesis of Structurally Well-Defined Triglyceryl Di-, Tri-, and Tetra-Fatty Acid Esters as New Oil Gelators. Synthesis, 2008, 2008, 3663-3669.	1.2	2
150	Modulation of Protein Partition in an Aqueous Two Phase System by Inclusion Complexation of Cyclodextrins. Chemistry Letters, 2019, 48, 1551-1554.	0.7	2
151	Effect of Branching Degree of Dendritic Polyglycerols on Plasma Protein Adsorption: Relationship between Hydration States and Surface Morphology. Langmuir, 2021, 37, 8534-8543.	1.6	2
152	Interaction of supramolecular-structured polyrotaxanes with hairless rat stratum corneum and its effect on indomethacin permeation Drug Delivery System, 1997, 12, 89-94.	0.0	2
153	Biodegradable Polymers. , 2002, , .		2
154	Supramolecular-Structured Polymers for Drug Delivery. ACS Symposium Series, 2000, , 375-384.	0.5	1
155	Successful low-energy cardioversion using a novel biodegradable gel pad: Feasibility of treating postoperative atrial fibrillation in animals. Journal of Thoracic and Cardiovascular Surgery, 2007, 134, 1519-1525.	0.4	1
156	Synthesis and characterization of a polyrotaxane consisting of \hat{I}^2 -cyclodextrins and a poly(ethylene) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
157	Supramolecular network formation through inclusion complexation of an $\hat{l}\pm$ -cyclodextrin-based molecular tube. , 2000, 21, 1257.		1
158	Synthesis and Hydrogelation of Star-Shaped Graft Copolypetides with Asymmetric Topology. Gels, 2022, 8, 366.	2.1	1
159	Preparation and characterization of plasmid DNA network via both triple helix formation and photo-crosslinking. Science and Technology of Advanced Materials, 2003, 4, 43-46.	2.8	0
160	ãf¢ãf¬ã,ãf¥ãf©ãf¼ã,∰f³ãf—ãfªãf³ãf†ã,£ãf³ã,° 最è;'ã®å±•é~‹. Kobunshi, 2008, 57, 903-906.	0.0	0
161	Evaluation of Ligand-Conjugated Polyglycerol Dendrimers as a <small>L</small> -arginine Carrier. Kobunshi Ronbunshu, 2017, 74, 304-310.	0.2	0
162	Amphiphilic Block Copolymers Bearing Hydrophobic \hat{I}^3 -Tocopherol Groups with Labile Acetal Bond. Polymers, 2020, 12, 36.	2.0	0

Tooru Ooya

#	Article	IF	CITATIONS
163	Role of Hydrophilic Monomers in α â€√ocopherolâ€Based Copolymers in Causing Cell Death by ROS Production. Macromolecular Chemistry and Physics, 2021, 222, 2100099.	1.1	O
164	Polymeric Functions as Determined from Supramolecular-Structured Cyclodextrins. Journal of Japan Oil Chemists' Society, 2000, 49, 471-478,514.	0.3	0
165	Fast Sliding Motions of Supramolecular Assemblies. , 2004, , .		0
166	Biochemical and Physical Stimuli-Triggered Cyclodextrin Release from Biodegradable Polyrotaxanes and those Hydrogels., 2006,, 303-316.		0
167	Solution Properties: Networks, Micelles, Dendrimers, and Hydrogels. , 0, , 7500-7511.		0
168	Basic Function and Applications of Polyglycerol Dendrimers. Oleoscience, 2017, 17, 211-216.	0.0	0