Timothy J Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1324830/publications.pdf

Version: 2024-02-01

394421 377865 1,576 36 19 34 citations g-index h-index papers 43 43 43 2344 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Towards efficient immunotherapy for bacterial infection. Trends in Microbiology, 2022, 30, 158-169.	7.7	41
2	Inhibition of the master regulator of Listeria monocytogenes virulence enables bacterial clearance from spacious replication vacuoles in infected macrophages. PLoS Pathogens, 2022, 18, e1010166.	4.7	7
3	Genomic diversity and antimicrobial resistance of Prevotella species isolated from chronic lung disease airways. Microbial Genomics, 2022, 8, .	2.0	6
4	BamA and BamD Are Essential for the Secretion of Trimeric Autotransporter Adhesins. Frontiers in Microbiology, 2021, 12, 628879.	3.5	4
5	Antibody-Dependent Enhancement of Bacterial Disease: Prevalence, Mechanisms, and Treatment. Infection and Immunity, 2021, 89, .	2.2	11
6	Mediation of Interleukinâ€23 and Tumor Necrosis Factor–Driven Reactive Arthritis by <i>Chlamydia</i> â€Infected Macrophages in SKG Mice. Arthritis and Rheumatology, 2021, 73, 1200-1210.	5.6	5
7	Anti-LPS IgA and IgG Can Inhibit Serum Killing of Pseudomonas aeruginosa in Patients with Cystic Fibrosis. Infection and Immunity, 2021, 89, e0041221.	2.2	5
8	Inferior outcomes in lung transplant recipients with serum Pseudomonas aeruginosa specific cloaking antibodies. Journal of Heart and Lung Transplantation, 2021, 40, 951-959.	0.6	4
9	<i>Streptococcus</i> species enriched in the oral cavity of patients with RA are a source of peptidoglycan-polysaccharide polymers that can induce arthritis in mice. Annals of the Rheumatic Diseases, 2021, 80, 573-581.	0.9	24
10	Treatment of life-threatening Pseudomonas aeruginosa infection by pheresis of inhibitory antibodies. Journal of Heart and Lung Transplantation, 2020, 39, 87-89.	0.6	7
11	Structure of dual BON-domain protein DolP identifies phospholipid binding as a new mechanism for protein localisation. ELife, 2020, 9, .	6.0	25
12	Bacterial flagellin promotes viral entry via an NF-kB and Toll Like Receptor 5 dependent pathway. Scientific Reports, 2019, 9, 7903.	3.3	16
13	Role of a single noncoding nucleotide in the evolution of an epidemic African clade of <i>Salmonella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2614-E2623.	7.1	75
14	YraP Contributes to Cell Envelope Integrity and Virulence of Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2018, 86, .	2.2	19
15	A Novel Method of Serum Resistance by Escherichia coli That Causes Urosepsis. MBio, 2018, 9, .	4.1	25
16	The Use of Plasmapheresis in Patients with Bronchiectasis with Pseudomonas aeruginosa Infection and Inhibitory Antibodies. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 955-958.	5.6	11
17	Antigen Localization Influences the Magnitude and Kinetics of Endogenous Adaptive Immune Response to Recombinant Salmonella Vaccines. Infection and Immunity, 2017, 85, .	2.2	6
18	Crossâ€species chimeras reveal <scp>BamA POTRA</scp> and <scp>β</scp> â€barrel domains must be fineâ€tuned for efficient <scp>OMP</scp> insertion. Molecular Microbiology, 2015, 97, 646-659.	2.5	17

#	Article	IF	CITATIONS
19	Increased severity of respiratory infections associated with elevated anti-LPS IgG2 which inhibits serum bactericidal killing. Journal of Experimental Medicine, 2014, 211, 1893-1904.	8.5	74
20	Type 1 and 5 secretion systems and associated toxins. , 2013, , 499-532.		5
21	Laboratory adapted <i><scp>E</scp>scherichia coli</i> <scp>K</scp> â€12 becomes a pathogen of <i><scp>C</scp> antigen biosynthesis. Molecular Microbiology, 2013, 87, 939-950.</i>	2.5	72
22	Genotypic and Phenotypic Characterisation of Enteroaggregative Escherichia coli from Children in Rio de Janeiro, Brazil. PLoS ONE, 2013, 8, e69971.	2.5	21
23	Mutational and Topological Analysis of the Escherichia coli BamA Protein. PLoS ONE, 2013, 8, e84512.	2.5	29
24	Molecular Characterization of the EhaG and UpaG Trimeric Autotransporter Proteins from Pathogenic Escherichia coli. Applied and Environmental Microbiology, 2012, 78, 2179-2189.	3.1	65
25	A generalised module for the selective extracellular accumulation of recombinant proteins. Microbial Cell Factories, $2012,11,69.$	4.0	34
26	Discovery of an archetypal protein transport system in bacterial outer membranes. Nature Structural and Molecular Biology, 2012, 19, 506-510.	8.2	192
27	SadA, a Trimeric Autotransporter from Salmonella enterica Serovar Typhimurium, Can Promote Biofilm Formation and Provides Limited Protection against Infection. Infection and Immunity, 2011, 79, 4342-4352.	2.2	79
28	Size and Conformation Limits to Secretion of Disulfide-bonded Loops in Autotransporter Proteins. Journal of Biological Chemistry, 2011, 286, 42283-42291.	3.4	70
29	Autotransporters of Escherichia coli: a sequence-based characterization. Microbiology (United) Tj ETQq1 1 0.78	4314 rgBT 1.8	/Oygrlock 10
30	Structural and Functional Characterization of Three DsbA Paralogues from Salmonella enterica Serovar Typhimurium. Journal of Biological Chemistry, 2010, 285, 18423-18432.	3.4	47
31	UpaH Is a Newly Identified Autotransporter Protein That Contributes to Biofilm Formation and Bladder Colonization by Uropathogenic <i>Escherichia coli</i> CFT073. Infection and Immunity, 2010, 78, 1659-1669.	2.2	77
32	A Commensal Gone Bad: Complete Genome Sequence of the Prototypical Enterotoxigenic <i>Escherichia coli</i> Strain H10407. Journal of Bacteriology, 2010, 192, 5822-5831.	2.2	168
33	The $\langle i \rangle$ Escherichia coli $\langle i \rangle$ O157:H7 EhaB autotransporter protein binds to laminin and collagen I and induces a serum IgA response in O157:H7 challenged cattle. Environmental Microbiology, 2009, 11, 1803-1814.	3.8	46
34	EhaA is a novel autotransporter protein of enterohemorrhagic <i>Escherichia coli</i> O157:H7 that contributes to adhesion and biofilm formation. Environmental Microbiology, 2008, 10, 589-604.	3.8	112
35	Autotransporter proteins: novel targets at the bacterial cell surface. FEMS Microbiology Letters, 2007, 274, 163-172.	1.8	113
36	<scp>CIS</scp> and <scp>TGF</scp> â€ $\hat{\mathbf{i}}^2$ regulatory pathways influence immunity to bacterial infection. Immunology, 0, , .	4.4	1