Ting-Zhu Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1324672/publications.pdf

Version: 2024-02-01

452 papers

7,753 citations

45 h-index 64 g-index

456 all docs

456 docs citations

456 times ranked

3831 citing authors

#	Article	IF	Citations
1	Deblurring and Sparse Unmixing for Hyperspectral Images. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 4045-4058.	2.7	142
2	Hyperspectral Image Restoration Using Weighted Group Sparsity-Regularized Low-Rank Tensor Decomposition. IEEE Transactions on Cybernetics, 2020, 50, 3556-3570.	6.2	142
3	Mixed Noise Removal in Hyperspectral Image via Low-Fibered-Rank Regularization. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 734-749.	2.7	139
4	Image restoration using total variation with overlapping group sparsity. Information Sciences, 2015, 295, 232-246.	4.0	132
5	Tensor completion using total variation and low-rank matrix factorization. Information Sciences, 2016, 326, 243-257.	4.0	125
6	FastDeRain: A Novel Video Rain Streak Removal Method Using Directional Gradient Priors. IEEE Transactions on Image Processing, 2019, 28, 2089-2102.	6.0	121
7	A directional global sparse model for single image rain removal. Applied Mathematical Modelling, 2018, 59, 662-679.	2.2	113
8	A Novel Tensor-Based Video Rain Streaks Removal Approach via Utilizing Discriminatively Intrinsic Priors. , 2017, , .		110
9	Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. Journal of Computational and Applied Mathematics, 2020, 363, 124-144.	1.1	93
10	Optimal Dual Frames for Communication Coding With Probabilistic Erasures. IEEE Transactions on Signal Processing, 2011, 59, 5380-5389.	3.2	92
11	On Leader–Follower Consensus With Switching Topologies: An Analysis Inspired by Pigeon Hierarchies. IEEE Transactions on Automatic Control, 2018, 63, 3588-3593.	3.6	85
12	Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation. Journal of Scientific Computing, 2017, 72, 957-985.	1.1	84
13	Framelet Representation of Tensor Nuclear Norm for Third-Order Tensor Completion. IEEE Transactions on Image Processing, 2020, 29, 7233-7244.	6.0	84
14	An active contour model and its algorithms with local and global Gaussian distribution fitting energies. Information Sciences, 2014, 263, 43-59.	4.0	81
15	Double-Factor-Regularized Low-Rank Tensor Factorization for Mixed Noise Removal in Hyperspectral Image. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 8450-8464.	2.7	81
16	Leader-following consensus for multi-agent systems via sampled-data control. IET Control Theory and Applications, 2011, 5, 1658-1665.	1.2	78
17	Joint-Sparse-Blocks and Low-Rank Representation for Hyperspectral Unmixing. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 2419-2438.	2.7	75
18	Hyperspectral Image Super-Resolution via Deep Spatiospectral Attention Convolutional Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 7251-7265.	7.2	74

#	Article	IF	CITATIONS
19	Consensus of second-order multi-agent systems with nonuniform time-varying delays. Neurocomputing, 2012, 97, 410-414.	3.5	73
20	A non-convex tensor rank approximation for tensor completion. Applied Mathematical Modelling, 2017, 48, 410-422.	2.2	72
21	Nonlocal Tensor-Ring Decomposition for Hyperspectral Image Denoising. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 1348-1362.	2.7	71
22	Total Variation Structured Total Least Squares Method for Image Restoration. SIAM Journal of Scientific Computing, 2013, 35, B1304-B1320.	1.3	70
23	Group consensus of multi-agent systems with communication delays. Neurocomputing, 2016, 171, 1666-1673.	3.5	67
24	Group sparsity based regularization model for remote sensing image stripe noise removal. Neurocomputing, 2017, 267, 95-106.	3.5	65
25	Truncated \$I_{1-2}\$ Models for Sparse Recovery and Rank Minimization. SIAM Journal on Imaging Sciences, 2017, 10, 1346-1380.	1.3	65
26	Speckle noise removal in ultrasound images by first- and second-order total variation. Numerical Algorithms, 2018, 78, 513-533.	1.1	64
27	Matrix factorization for low-rank tensor completion using framelet prior. Information Sciences, 2018, 436-437, 403-417.	4.0	62
28	Low-rank tensor train for tensor robust principal component analysis. Applied Mathematics and Computation, 2020, 367, 124783.	1.4	62
29	Chebyshev-type methods and preconditioning techniques. Applied Mathematics and Computation, 2011, 218, 260-270.	1.4	60
30	Nonlocal Tensor Completion for Multitemporal Remotely Sensed Images' Inpainting. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 3047-3061.	2.7	60
31	Cauchy Noise Removal by Nonconvex ADMM with Convergence Guarantees. Journal of Scientific Computing, 2018, 74, 743-766.	1.1	59
32	Destriping of Multispectral Remote Sensing Image Using Low-Rank Tensor Decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 4950-4967.	2.3	57
33	Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm. Journal of Computational and Applied Mathematics, 2020, 372, 112680.	1.1	55
34	A modified SSOR iterative method for augmented systems. Journal of Computational and Applied Mathematics, 2009, 228, 424-433.	1.1	54
35	Hyperspectral Image Superresolution Using Unidirectional Total Variation With Tucker Decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 4381-4398.	2.3	54
36	Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint. Remote Sensing, 2017, 9, 559.	1.8	53

3

#	Article	IF	CITATIONS
37	Blind cloud and cloud shadow removal of multitemporal images based on total variation regularized low-rank sparsity decomposition. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 157, 93-107.	4.9	53
38	A two-stage image segmentation via global and local region active contours. Neurocomputing, 2016, 205, 130-140.	3.5	52
39	A novel analysis on the efficiency of hierarchy among leader-following systems. Automatica, 2016, 73, 215-222.	3.0	52
40	Tensor N-tubal rank and its convex relaxation for low-rank tensor recovery. Information Sciences, 2020, 532, 170-189.	4.0	52
41	Single-Image Super-Resolution via an Iterative Reproducing Kernel Hilbert Space Method. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26, 2001-2014.	5.6	49
42	Asynchronous containment control for discrete-time second-order multi-agent systems with time-varying delays. Journal of the Franklin Institute, 2017, 354, 8552-8569.	1.9	49
43	Low-rank tensor completion via smooth matrix factorization. Applied Mathematical Modelling, 2019, 70, 677-695.	2.2	49
44	Laplacian pyramid networks: A new approach for multispectral pansharpening. Information Fusion, 2022, 78, 158-170.	11.7	49
45	Hyperspectral Image Compressive Sensing Reconstruction Using Subspace-Based Nonlocal Tensor Ring Decomposition. IEEE Transactions on Image Processing, 2020, 29, 6813-6828.	6.0	47
46	LSQR iterative method for generalized coupled Sylvester matrix equations. Applied Mathematical Modelling, 2012, 36, 3545-3554.	2.2	46
47	High-order TVL1-based images restoration and spatially adapted regularization parameter selection. Computers and Mathematics With Applications, 2014, 67, 2015-2026.	1.4	46
48	Low-Rank Tensor Completion Using Matrix Factorization Based on Tensor Train Rank and Total Variation. Journal of Scientific Computing, 2019, 81, 941-964.	1.1	46
49	Total variation and high-order total variation adaptive model for restoring blurred images with Cauchy noise. Computers and Mathematics With Applications, 2019, 77, 1255-1272.	1.4	46
50	Local segmentation of images using an improved fuzzy C-means clustering algorithm based on self-adaptive dictionary learning. Applied Soft Computing Journal, 2020, 91, 106200.	4.1	45
51	Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems. Numerical Linear Algebra With Applications, 2007, 14, 217-235.	0.9	44
52	Upper bound for the largest <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Z</mml:mi></mml:math> -eigenvalue of positive tensors. Applied Mathematics Letters, 2014, 38, 110-114.	1.5	42
53	Image segmentation based on an active contour model of partial image restoration with local cosine fitting energy. Information Sciences, 2018, 447, 52-71.	4.0	42
54	Tensor Completion via Complementary Global, Local, and Nonlocal Priors. IEEE Transactions on Image Processing, 2022, 31, 984-999.	6.0	42

#	Article	IF	CITATIONS
55	Hyperspectral Super-Resolution via Interpretable Block-Term Tensor Modeling. IEEE Journal on Selected Topics in Signal Processing, 2021, 15, 641-656.	7.3	39
56	Lanczos-type variants of the COCR method for complex nonsymmetric linear systems. Journal of Computational Physics, 2009, 228, 6376-6394.	1.9	38
57	Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. Journal of Computational and Applied Mathematics, 2015, 277, 73-86.	1.1	38
58	Laplace function based nonconvex surrogate for low-rank tensor completion. Signal Processing: Image Communication, 2019, 73, 62-69.	1.8	38
59	Rain Streaks Removal for Single Image via Kernel-Guided Convolutional Neural Network. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 3664-3676.	7.2	38
60	Hyperspectral Image Denoising Using Factor Group Sparsity-Regularized Nonconvex Low-Rank Approximation. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	2.7	38
61	Containment control for heterogeneous multi-agent systems with asynchronous updates. Information Sciences, 2018, 436-437, 74-88.	4.0	37
62	Single image super-resolution by approximated Heaviside functions. Information Sciences, 2016, 348, 107-123.	4.0	35
63	Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations. Applied Mathematics Letters, 2017, 68, 13-19.	1.5	35
64	Quadratic spline collocation method for the time fractional subdiffusion equation. Applied Mathematics and Computation, 2016, 276, 252-265.	1.4	34
65	Method of elementary transformation to compute Moore–Penrose inverse. Applied Mathematics and Computation, 2010, 216, 1614-1617.	1.4	33
66	Low-rank tensor completion via combined non-local self-similarity and low-rank regularization. Neurocomputing, 2019, 367, 1-12.	3.5	33
67	Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse. Linear Algebra and Its Applications, 2007, 420, 235-247.	0.4	32
68	A Reduced-Order Discontinuous Galerkin Method Based on POD for Electromagnetic Simulation. IEEE Transactions on Antennas and Propagation, 2018, 66, 242-254.	3.1	32
69	Multi-Dimensional Visual Data Completion via Low-Rank Tensor Representation Under Coupled Transform. IEEE Transactions on Image Processing, 2021, 30, 3581-3596.	6.0	32
70	A Triple-Double Convolutional Neural Network for Panchromatic Sharpening. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 9088-9101.	7.2	32
71	Convergence and comparison theorems for double splittings of matrices. Computers and Mathematics With Applications, 2006, 51, 1751-1760.	1.4	30
72	Exemplar-Based Image Inpainting Using a Modified Priority Definition. PLoS ONE, 2015, 10, e0141199.	1.1	30

#	Article	IF	Citations
73	A High-Order Accurate Numerical Scheme for the Caputo Derivative with Applications to Fractional Diffusion Problems. Numerical Functional Analysis and Optimization, 2018, 39, 600-622.	0.6	30
74	Directional â, "O Sparse Modeling for Image Stripe Noise Removal. Remote Sensing, 2018, 10, 361.	1.8	30
75	Total variation with overlapping group sparsity for deblurring images under Cauchy noise. Applied Mathematics and Computation, 2019, 341, 128-147.	1.4	30
76	VO+Net: An Adaptive Approach Using Variational Optimization and Deep Learning for Panchromatic Sharpening. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	2.7	30
77	A note on inversion of Toeplitz matrices. Applied Mathematics Letters, 2007, 20, 1189-1193.	1.5	29
78	The spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for generalized saddle point problems. Journal of Computational and Applied Mathematics, 2009, 229, 37-46.	1.1	29
79	A Tensor Subspace Representation-Based Method for Hyperspectral Image Denoising. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 7739-7757.	2.7	29
80	A note on sum of powers of the Laplacian eigenvalues of bipartite graphs. Linear Algebra and Its Applications, 2009, 430, 2503-2510.	0.4	28
81	Kronecker product approximations for image restoration with whole-sample symmetric boundary conditions. Information Sciences, 2012, 186, 150-163.	4.0	28
82	Two soft-thresholding based iterative algorithms for image deblurring. Information Sciences, 2014, 271, 179-195.	4.0	28
83	A convex total generalized variation regularized model for multiplicative noise and blur removal. Applied Mathematics and Computation, 2016, 276, 109-121.	1.4	28
84	Hyperspectral image restoration using framelet-regularized low-rank nonnegative matrix factorization. Applied Mathematical Modelling, 2018, 63, 128-147.	2.2	28
85	Simultaneous image fusion and denoising by using fractional-order gradient information. Journal of Computational and Applied Mathematics, 2019, 351, 212-227.	1.1	28
86	Asymmetric Hermitian and skew-Hermitian splitting methods for positive definite linear systems. Computers and Mathematics With Applications, 2007, 54, 147-159.	1.4	27
87	On the inverse of a general pentadiagonal matrix. Applied Mathematics and Computation, 2008, 202, 639-646.	1.4	27
88	Simple criteria for nonsingular H-matrices. Linear Algebra and Its Applications, 2003, 374, 317-326.	0.4	26
89	A preconditioned and extrapolation-accelerated GMRES method for PageRank. Applied Mathematics Letters, 2014, 37, 95-100.	1.5	26
90	Total variation with overlapping group sparsity for speckle noise reduction. Neurocomputing, 2016, 216, 502-513.	3 . 5	26

#	Article	IF	CITATIONS
91	Double Reweighted Sparse Regression and Graph Regularization for Hyperspectral Unmixing. Remote Sensing, 2018, 10, 1046.	1.8	26
92	The BiCOR and CORS Iterative Algorithms for Solving Nonsymmetric Linear Systems. SIAM Journal of Scientific Computing, 2011, 33, 3020-3036.	1.3	25
93	High-order total variation-based multiplicative noise removal with spatially adapted parameter selection. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 1956.	0.8	25
94	High-order total variation-based Poissonian image deconvolution with spatially adapted regularization parameter. Applied Mathematical Modelling, 2017, 45, 516-529.	2.2	25
95	A New Variational Approach Based on Proximal Deep Injection and Gradient Intensity Similarity for Spatio-Spectral Image Fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 6277-6290.	2.3	25
96	On some subclasses of P-matrices. Numerical Linear Algebra With Applications, 2007, 14, 391-405.	0.9	24
97	On the inverses of general tridiagonal matrices. Linear Algebra and Its Applications, 2010, 433, 965-983.	0.4	24
98	Convergence of a generalized MSSOR method for augmented systems. Journal of Computational and Applied Mathematics, 2012, 236, 1841-1850.	1.1	24
99	The SCBiCG class of algorithms for complex symmetric linear systems with applications in several electromagnetic model problems. Computer Physics Communications, 2015, 191, 52-64.	3.0	24
100	A note on the two-step matrix splitting iteration for computing PageRank. Journal of Computational and Applied Mathematics, 2017, 315, 87-97.	1.1	24
101	Dynamic Cross Feature Fusion for Remote Sensing Pansharpening. , 2021, , .		24
102	Some improved criteria for global robust exponential stability of neural networks with time-varying delays. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 3782-3794.	1.7	23
103	Quasi-Minimal Residual Variants of the COCG and COCR Methods for Complex Symmetric Linear Systems in Electromagnetic Simulations. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2859-2867.	2.9	23
104	A fast image recovery algorithm based on splitting deblurring and denoising. Journal of Computational and Applied Mathematics, 2015, 287, 88-97.	1.1	23
105	Bilateral filter based total variation regularization for sparse hyperspectral image unmixing. Information Sciences, 2019, 504, 334-353.	4.0	23
106	Nonlocal Tensor-Based Sparse Hyperspectral Unmixing. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 6854-6868.	2.7	23
107	A New Context-Aware Details Injection Fidelity With Adaptive Coefficients Estimation for Variational Pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	2.7	23
108	A note on computing the inverse and the determinant of a pentadiagonal Toeplitz matrix. Applied Mathematics and Computation, 2008, 206, 327-331.	1.4	22

#	Article	IF	Citations
109	Leader-following formation control for second-order multi-agent systems with time-varying delays. Transactions of the Institute of Measurement and Control, 2014, 36, 627-636.	1.1	22
110	On <mml:math altimg="si43.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> -step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations. Applied Mathematics Letters, 2015, 42, 53-58.	1.5	22
111	Group-based image decomposition using 3-D cartoon and texture priors. Information Sciences, 2016, 328, 510-527.	4.0	22
112	Multiscale Feature Tensor Train Rank Minimization for Multidimensional Image Recovery. IEEE Transactions on Cybernetics, 2022, 52, 13395-13410.	6.2	22
113	Improved global robust exponential stability criteria for interval neural networks with time-varying delays. Expert Systems With Applications, 2011, 38, 15587-15593.	4.4	21
114	Probability modelled optimal frames for erasures. Linear Algebra and Its Applications, 2013, 438, 4222-4236.	0.4	21
115	Image deblurring with an inaccurate blur kernel using a group-based low-rank image prior. Information Sciences, 2017, 408, 213-233.	4.0	21
116	An efficient elimination strategy for solving PageRank problems. Applied Mathematics and Computation, 2017, 298, 111-122.	1.4	21
117	Restarted Hessenberg method for solving shifted nonsymmetric linear systems. Journal of Computational and Applied Mathematics, 2018, 331, 166-177.	1.1	21
118	Total Variation with Overlapping Group Sparsity for Image Deblurring under Impulse Noise. PLoS ONE, 2015, 10, e0122562.	1.1	21
119	EXPERIMENTS WITH LANCZOS BICONJUGATE A-ORTHONORMALIZATION METHODS FOR MOM DISCRETIZATIONS OF MAXWELL'S EQUATIONS. Progress in Electromagnetics Research, 2009, 99, 427-451.	1.6	20
120	Coupling projection domain decomposition method and Kansa's method in electrostatic problems. Computer Physics Communications, 2009, 180, 209-214.	3.0	20
121	Adaptive Hyperspectral Mixed Noise Removal. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	2.7	20
122	Modified iterative methods for nonnegative matrices and M-matrices linear systems. Computers and Mathematics With Applications, 2005, 50, 1587-1602.	1.4	19
123	Restarted weighted full orthogonalization method for shifted linear systems. Computers and Mathematics With Applications, 2009, 57, 1583-1591.	1.4	19
124	Exponential stability of static neural networks with time delay and impulses. IET Control Theory and Applications, 2011, 5, 943-951.	1,2	19
125	Cartoon–texture image decomposition via non-convex low-rank texture regularization. Journal of the Franklin Institute, 2017, 354, 3170-3187.	1.9	19
126	Patch-Based Principal Component Analysis for Face Recognition. Computational Intelligence and Neuroscience, 2017, 2017, 1-9.	1.1	19

#	Article	IF	CITATIONS
127	POD-based model order reduction with an adaptive snapshot selection for a discontinuous Galerkin approximation of the time-domain Maxwell's equations. Journal of Computational Physics, 2019, 396, 106-128.	1.9	19
128	A variant of the Power–Arnoldi algorithm for computing PageRank. Journal of Computational and Applied Mathematics, 2021, 381, 113034.	1.1	19
129	A fast implicit difference scheme for solving the generalized time–space fractional diffusion equations with variable coefficients. Numerical Methods for Partial Differential Equations, 2021, 37, 1136-1162.	2.0	19
130	Hyperspectral and Multispectral Image Fusion Using Factor Smoothed Tensor Ring Decomposition. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	2.7	19
131	The inverses of block tridiagonal matrices. Applied Mathematics and Computation, 2006, 179, 243-247.	1.4	18
132	Improving bounds for eigenvalues of complex matrices using traces. Linear Algebra and Its Applications, 2007, 426, 841-854. http://www.w3.org/1998/Math/MathML" altimg="sil.gif"	0.4	18
133	overflow= scroll > <mml:mrow><mml:mo stretchy="false">â€-</mml:mo><mml:msup><mml:mrow><mml:mi>A</mml:mi></mml:mrow> for weakly chained diagonally dominant <mml:math< td=""><td></td><td></td></mml:math<></mml:msup></mml:mrow>		
134	Eigenvalue Estimates for Preconditioned Nonsymmetric Saddle Point Matrices. SIAM Journal on Matrix Analysis and Applications, 2010, 31, 2453-2476.	0.7	18
135	Restoration of blurred color images with impulse noise. Computers and Mathematics With Applications, 2015, 70, 1255-1265.	1.4	18
136	Regularization Preconditioners for Frame-Based Image Deblurring with Reduced Boundary Artifacts. SIAM Journal of Scientific Computing, 2016, 38, B164-B189.	1.3	18
137	A block GMRES method with deflated restarting for solving linear systems with multiple shifts and multiple rightâ€hand sides. Numerical Linear Algebra With Applications, 2018, 25, e2148.	0.9	18
138	Second order total generalized variation for speckle reduction in ultrasound images. Journal of the Franklin Institute, 2018, 355, 574-595.	1.9	18
139	A variational model with hybrid Hyper-Laplacian priors for Retinex. Applied Mathematical Modelling, 2019, 66, 305-321.	2.2	18
140	Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems and Imaging, 2021, 15, 475.	0.6	18
141	Improved stability criteria for a class of neural networks with variable delays and impulsive perturbations. Applied Mathematics and Computation, 2014, 243, 923-935.	1.4	17
142	FOM accelerated by an extrapolation method for solving PageRank problems. Journal of Computational and Applied Mathematics, 2016, 296, 397-409.	1.1	17
143	A total variation and group sparsity based tensor optimization model for video rain streak removal. Signal Processing: Image Communication, 2019, 73, 96-108.	1.8	17
144	Further analysis on global robust exponential stability of neural networks with time-varying delays. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 1117-1124.	1.7	16

#	Article	IF	CITATIONS
145	Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems. Journal of Computational and Applied Mathematics, 2007, 206, 726-732.	1.1	15
146	Primitive Zero-Symmetric Sign Pattern Matrices with Zero Diagonal Attaining the Maximum Base. Journal of Applied Mathematics, 2012, 2012, 1-28.	0.4	15
147	Augmentation Block Triangular Preconditioners for Regularized Saddle Point Problems. SIAM Journal on Matrix Analysis and Applications, 2012, 33, 721-741.	0.7	15
148	Global exponential stability of static neural networks with delay and impulses: Discrete-time case. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 3947-3960.	1.7	15
149	A special Hermitian and skew-Hermitian splitting method for image restoration. Applied Mathematical Modelling, 2013, 37, 1069-1082.	2.2	15
150	An alternating iterative algorithm for image deblurring and denoising problems. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 617-626.	1.7	15
151	A Novel Inpainting Algorithm for Recovering Landsat-7 ETM+ SLC-OFF Images Based on the Low-Rank Approximate Regularization Method of Dictionary Learning With Nonlocal and Nonconvex Models. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 6741-6754.	2.7	15
152	Tensor train rank minimization with hybrid smoothness regularization for visual data recovery. Applied Mathematical Modelling, 2020, 81, 711-726.	2.2	15
153	Three-dimensional fractional total variation regularized tensor optimized model for image deblurring. Applied Mathematics and Computation, 2021, 404, 126224.	1.4	15
154	Global dissipativity of delayed neural networks with impulses. Journal of the Franklin Institute, 2011, 348, 2270-2291.	1.9	14
155	Primal-dual splitting method for high-order model with application to image restoration. Applied Mathematical Modelling, 2016, 40, 2322-2332.	2.2	14
156	Reweighted Block Sparsity Regularization for Remote Sensing Images Destriping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 4951-4963.	2.3	14
157	Local Low-Rank and Sparse Representation for Hyperspectral Image Denoising. IEEE Access, 2019, 7, 79850-79865.	2.6	14
158	A sheared low-rank model for oblique stripe removal. Applied Mathematics and Computation, 2019, 360, 167-180.	1.4	14
159	An Iterative Regularization Method Based on Tensor Subspace Representation for Hyperspectral Image Super-Resolution. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	2.7	14
160	Estimates for the inverse elements of tridiagonal matrices. Applied Mathematics Letters, 2006, 19, 590-598.	1.5	13
161	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.4	13
162	Convergence and comparison results for double splittings of Hermitian positive definite matrices. Calcolo, 2007, 44, 127-135.	0.6	13

#	Article	IF	CITATIONS
163	An inversion algorithm for general tridiagonal matrix. Applied Mathematics and Mechanics (English) Tj ETQq1 10.	784314 rg	gBŢ,/Overl <mark>oc</mark>
164	A new preconditioner for indefinite and asymmetric matrices. Applied Mathematics and Computation, 2013, 219, 11036-11043.	1.4	13
165	A hybrid-mesh hybridizable discontinuous Galerkin method for solving the time-harmonic Maxwell's equations. Applied Mathematics Letters, 2017, 68, 109-116.	1.5	13
166	A simpler GMRES and its adaptive variant for shifted linear systems. Numerical Linear Algebra With Applications, 2017, 24, e2076.	0.9	13
167	A nonstationary accelerating alternating direction method for frame-based Poissonian image deblurring. Journal of Computational and Applied Mathematics, 2019, 352, 181-193.	1.1	13
168	Convergence of generalized AOR iterative method for linear systems with strictly diagonally dominant matrices. Journal of Computational and Applied Mathematics, 2008, 213, 240-247.	1.1	12
169	Generalized block triangular preconditioner for symmetric saddle point problems. Computing (Vienna/New York), 2009, 84, 183-208.	3.2	12
170	The Weaker Convergence of Non-stationary Matrix Multisplitting Methods for Almost Linear Systems. Taiwanese Journal of Mathematics, 2011, 15, .	0.2	12
171	A generalized product-type BiCOR method and its application in signal deconvolution. Computers and Mathematics With Applications, 2013, 66, 1372-1388.	1.4	12
172	BiCR-type methods for families of shifted linear systems. Computers and Mathematics With Applications, 2014, 68, 746-758.	1.4	12
173	Variant of the region-scalable fitting energy for image segmentation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 463.	0.8	12
174	Exponential weighted entropy and exponential weighted mutual information. Neurocomputing, 2017, 249, 86-94.	3.5	12
175	Integration of Imaging (epi)Genomics Data for the Study of Schizophrenia Using Group Sparse Joint Nonnegative Matrix Factorization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 1671-1681.	1.9	12
176	Fast compact implicit integration factor method with non-uniform meshes for the two-dimensional nonlinear Riesz space-fractional reaction-diffusion equation. Applied Numerical Mathematics, 2020, 156, 346-363.	1.2	12
177	Region-based active contours with cosine fitting energy for image segmentation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 2237.	0.8	12
178	Tensor completion via nonconvex tensor ring rank minimization with guaranteed convergence. Signal Processing, 2022, 194, 108425.	2.1	12
179	Geometric Dilution of Precision in Navigation Computation. , 2006, , .		11
	Estimation of <mml:math <="" altimg="si1.gif" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td></td></mml:math>		

display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mo>â€-</mml:mo>(mml:msup><mml:mrow><mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:m

#	Article	IF	Citations
181	An analysis on global robust exponential stability of neural networks with time-varying delays. Neurocomputing, 2009, 72, 1993-1998.	3.5	11
182	A new result on global exponential robust stability of neural networks with time-varying delays. Journal of Control Theory and Applications, 2009, 7, 315-320.	0.8	11
183	Application of the incomplete Cholesky factorization preconditioned Krylov subspace method to the vector finite element method for 3-D electromagnetic scattering problems. Computer Physics Communications, 2010, 181, 271-276.	3.0	11
184	Containment Control of Multiagent Systems with Multiple Leaders and Noisy Measurements. Abstract and Applied Analysis, 2012, 2012, 1-9.	0.3	11
185	Split Bregman Iteration Algorithm for Image Deblurring Using Fourth-Order Total Bounded Variation Regularization Model. Journal of Applied Mathematics, 2013, 2013, 1-11.	0.4	11
186	Circulant preconditioned iterative methods for peridynamic model simulation. Applied Mathematics and Computation, 2014, 248, 470-479.	1.4	11
187	A hybridized iterative algorithm of the BiCORSTAB and GPBiCOR methods for solving non-Hermitian linear systems. Computers and Mathematics With Applications, 2015, 70, 3019-3031.	1.4	11
188	A reduced-order DG formulation based on POD method for the time-domain Maxwell's equations in dispersive media. Journal of Computational and Applied Mathematics, 2018, 336, 249-266.	1.1	11
189	A fast implicit difference scheme for a new class of time distributed-order and space fractional diffusion equations with variable coefficients. Advances in Difference Equations, 2018, 2018, .	3.5	11
190	Row-Sparsity Spectral Unmixing via Total Variation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 5009-5022.	2.3	11
191	Fast implicit integration factor method for nonlinear space Riesz fractional reaction–diffusion equations. Journal of Computational and Applied Mathematics, 2020, 378, 112935.	1.1	11
192	Endmember independence constrained hyperspectral unmixing via nonnegative tensor factorization. Knowledge-Based Systems, 2021, 216, 106657.	4.0	11
193	Compressive Sensing via Nonlocal Smoothed Rank Function. PLoS ONE, 2016, 11, e0162041.	1.1	11
194	Construction and properties of multiwavelet packets with arbitrary scale and the related algorithms of decomposition and reconstruction. Computers and Mathematics With Applications, 2006, 51, 1663-1676.	1.4	10
195	Modified SOR-type iterative method for Z-matrices. Applied Mathematics and Computation, 2006, 175, 258-268.	1.4	10
196	Global relaxed non-stationary multisplitting multi-parameter methods. International Journal of Computer Mathematics, 2008, 85, 211-224.	1.0	10
197	On some new approximate factorization methods for block tridiagonal matrices suitable for vector and parallel processors. Mathematics and Computers in Simulation, 2009, 79, 2135-2147.	2.4	10
198	A comparative study of iterative solutions to linear systems arising in quantum mechanics. Journal of Computational Physics, 2010, 229, 8511-8520.	1.9	10

#	Article	IF	Citations
199	Modified block preconditioners for the discretized time-harmonic Maxwell equations in mixed form. Journal of Computational and Applied Mathematics, 2013, 237, 419-431.	1.1	10
200	Efficient preconditioner updates for unsymmetric shifted linear systems. Computers and Mathematics With Applications, 2014, 67, 1643-1655.	1.4	10
201	A global minimization hybrid active contour model with applications to oil spill images. Computers and Mathematics With Applications, 2014, 68, 353-362.	1.4	10
202	Spatially dependent regularization parameter selection for total generalized variation-based image denoising. Computational and Applied Mathematics, 2018, 37, 277-296.	1.3	10
203	Block-accelerated aggregation multigrid for Markov chains with application to PageRank problems. Communications in Nonlinear Science and Numerical Simulation, 2018, 59, 472-487.	1.7	10
204	Flexible and deflated variants of the block shifted GMRES method. Journal of Computational and Applied Mathematics, 2019, 345, 168-183.	1.1	10
205	Off-diagonal low-rank preconditioner for difficult PageRank problems. Journal of Computational and Applied Mathematics, 2019, 346, 456-470.	1.1	10
206	Video deraining via nonlocal low-rank regularization. Applied Mathematical Modelling, 2020, 79, 896-913.	2.2	10
207	A simple estimation for the spectral radius of (block) H-matrices. Journal of Computational and Applied Mathematics, 2005, 177, 455-459.	1.1	9
208	Convergence of relaxed multisplitting USAOR methods for H-matrices linear systems. Applied Mathematics and Computation, 2008, 202, 121-132.	1.4	9
209	On a new iterative method for solving linear systems and comparison results. Journal of Computational and Applied Mathematics, 2008, 220, 74-84.	1.1	9
210	Positive stable preconditioners for symmetric indefinite linear systems arising from Helmholtz equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2401-2407.	0.9	9
211	Conjugate residual squared method and its improvement for non-symmetric linear systems. International Journal of Computer Mathematics, 2010, 87, 1578-1590.	1.0	9
212	Two augmentation preconditioners for nonsymmetric and indefinite saddle point linear systems with singular $(1,1)$ blocks. Computers and Mathematics With Applications, 2011, 62, 87-92.	1.4	9
213	Convergence analysis of the overlapping Schwarz waveform relaxation algorithm for reaction-diffusion equations with time delay. IMA Journal of Numerical Analysis, 2012, 32, 632-671.	1.5	9
214	Information measures based on fractional calculus. Information Processing Letters, 2012, 112, 916-921.	0.4	9
215	Kronecker product approximations for image restoration with new mean boundary conditions. Applied Mathematical Modelling, 2012, 36, 225-237.	2.2	9
216	New results on stability for a class of neural networks with distributed delays and impulses. Neurocomputing, 2013, 111, 115-121.	3.5	9

#	Article	IF	Citations
217	A fast second-order parareal solver for fractional optimal control problems. JVC/Journal of Vibration and Control, 2018, 24, 3418-3433.	1.5	9
218	Adaptive Hyperspectral Mixed Noise Removal. , 2018, , .		9
219	A Framelet-Based Iterative Pan-Sharpening Approach. Remote Sensing, 2018, 10, 622.	1.8	9
220	Joint-Sparse-Blocks Regression for Total Variation Regularized Hyperspectral Unmixing. IEEE Access, 2019, 7, 138779-138791.	2.6	9
221	Cauchy noise removal using group-based low-rank prior. Applied Mathematics and Computation, 2020, 372, 124971.	1.4	9
222	Non-Intrusive Reduced-Order Modeling of Parameterized Electromagnetic Scattering Problems using Cubic Spline Interpolation. Journal of Scientific Computing, 2021, 87, 1.	1.1	9
223	Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations. Computers and Mathematics With Applications, 2021, 94, 136-154.	1.4	9
224	Hyperspectral image restoration via superpixel segmentation of smooth band. Neurocomputing, 2021, 455, 340-352.	3.5	9
225	Robust Thick Cloud Removal for Multitemporal Remote Sensing Images Using Coupled Tensor Factorization. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	2.7	9
226	Tensor Completion via Fully-Connected Tensor Network Decomposition with Regularized Factors. Journal of Scientific Computing, 2022, 92, .	1.1	9
227	New convergence results for alternating methods. Journal of Computational and Applied Mathematics, 2001, 135, 325-333.	1.1	8
228	Preconditioned Gauss-Seidel type iterative method for solving linear systems. Applied Mathematics and Mechanics (English Edition), 2006, 27, 1275-1279.	1.9	8
229	Optimal Gerschgorin-type inclusion intervals of singular values. Numerical Linear Algebra With Applications, 2007, 14, 115-128.	0.9	8
230	Inclusion sets for singular values. Linear Algebra and Its Applications, 2008, 428, 2220-2235.	0.4	8
231	An inversion algorithm for a banded matrix. Computers and Mathematics With Applications, 2009, 58, 1699-1710.	1.4	8
232	Convergent improvement of SSOR multisplitting method for an H-matrix. Journal of Computational and Applied Mathematics, 2009, 225, 393-397.	1.1	8
233	A note on parallel multisplitting TOR method for <i>H</i> -matrices. International Journal of Computer Mathematics, 2011, 88, 501-507.	1.0	8
234	Leader-Following Consensus in Networks of Agents with Nonuniform Time-Varying Delays. Mathematical Problems in Engineering, 2012, 2012, 1-14.	0.6	8

#	Article	IF	Citations
235	Fast iterative solvers for numerical simulations of scattering and radiation on thin wires. Journal of Electromagnetic Waves and Applications, 2015, 29, 1281-1296.	1.0	8
236	Circulant preconditioned iterations for fractional diffusion equations based on Hermitian and skew-Hermitian splittings. Applied Mathematics Letters, 2015, 48, 14-22.	1.5	8
237	Two-step group-based adaptive soft-thresholding algorithm for image denoising. Optik, 2016, 127, 503-509.	1.4	8
238	Multispectral Image Denoising via Nonlocal Multitask Sparse Learning. Remote Sensing, 2018, 10, 116.	1.8	8
239	A New Shifted Block GMRES Method with Inexact Breakdowns for Solving Multi-Shifted and Multiple Right-Hand Sides Linear Systems. Journal of Scientific Computing, 2019, 78, 746-769.	1.1	8
240	Remote Sensing Image Stripe Detecting and Destriping Using the Joint Sparsity Constraint with Iterative Support Detection. Remote Sensing, 2019, 11 , 608.	1.8	8
241	Convergence of AOR method. Applied Mathematics and Computation, 2006, 176, 134-140.	1.4	7
242	Convergence of waveform relaxation methods for Hermitian positive definite linear systems. Applied Mathematics and Computation, 2008, 203, 943-952.	1.4	7
243	Note to the mixed-type splitting iterative method for Z-matrices linear systems. Journal of Computational and Applied Mathematics, 2008, 220, 1-7.	1.1	7
244	A Preconditioned COCG Method for Solving Complex Symmetric Linear Systems Arising from Scattering Problems. Journal of Electromagnetic Waves and Applications, 2008, 22, 2023-2034.	1.0	7
245	Block triangular preconditioners for the discretized time-harmonic Maxwell equations in mixed form. Computer Physics Communications, 2009, 180, 192-196.	3.0	7
246	A new algorithm for linear systems of the Pascal type. Journal of Computational and Applied Mathematics, 2009, 225, 309-315.	1.1	7
247	The spectral properties of the preconditioned matrix for nonsymmetric saddle point problems. Journal of Computational and Applied Mathematics, 2010, 235, 270-285.	1.1	7
248	MODIFIED SSOR-LIKE METHOD FOR AUGMENTED SYSTEMS. Mathematical Modelling and Analysis, 2011, 16, 475-487.	0.7	7
249	A Relaxed Splitting Preconditioner for the Incompressible Navier-Stokes Equations. Journal of Applied Mathematics, 2012, 2012, 1-12.	0.4	7
250	Wavelet-based two-level methods for image restoration. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 5079-5087.	1.7	7
251	Solution to 3-D electromagnetic problems discretized by a hybrid FEM/MOM method. Computer Physics Communications, 2013, 184, 73-78.	3.0	7
252	A hybrid variant of the BiCOR method for a nonsymmetric linear system with a complex spectrum. Applied Mathematics Letters, 2013, 26, 457-462.	1.5	7

#	Article	IF	Citations
253	Signal restoration combining Tikhonov regularization and multilevel method with thresholding strategy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 948.	0.8	7
254	On the eigenvalue distribution of preconditioned nonsymmetric saddle point matrices. Numerical Linear Algebra With Applications, 2014, 21, 557-568.	0.9	7
255	A quasi-minimal residual variant of the BiCORSTAB method for nonsymmetric linear systems. Computers and Mathematics With Applications, 2014, 67, 1743-1755.	1.4	7
256	An adaptive weighting parameter estimation between local and global intensity fitting energy for image segmentation. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 3098-3105.	1.7	7
257	An augmented Lagrangian algorithm for total bounded variation regularization based image deblurring. Journal of the Franklin Institute, 2014, 351, 3053-3067.	1.9	7
258	Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a hybridizable discontinuous Galerkin method. Computer Physics Communications, 2016, 200, 176-181.	3.0	7
259	Vector Extrapolation Based Landweber Method for Discrete Ill-Posed Problems. Mathematical Problems in Engineering, 2017, 2017, 1-8.	0.6	7
260	A spectrally preconditioned and initially deflated variant of the restarted block GMRES method for solving multiple right-hand sides linear systems. International Journal of Mechanical Sciences, 2018, 144, 775-787.	3 . 6	7
261	A shifted complex global Lanczos method and the quasi-minimal residual variant for the Stein-conjugate matrix equation X+AXÂ ⁻ B=C. Journal of Computational and Applied Mathematics, 2019, 357, 1-11.	1.1	7
262	Efficient variants of the CMRH method for solving a sequence of multi-shifted non-Hermitian linear systems simultaneously. Journal of Computational and Applied Mathematics, 2020, 375, 112788.	1.1	7
263	A two-step iterative algorithm for sparse hyperspectral unmixing via total variation. Applied Mathematics and Computation, 2021, 401, 126059.	1.4	7
264	AOR type iterations for solving preconditioned linear systems. International Journal of Computer Mathematics, 2005, 82, 969-976.	1.0	6
265	Improving Jacobi methods for nonnegative H-matrices linear systems. Applied Mathematics and Computation, 2007, 186, 1542-1550.	1.4	6
266	A Note on "Global Robust Stability Criteria for Interval Delayed Neural Networks Via an LMI Approach― IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 1198-1202.	2.2	6
267	A Novel Integration Method for Weak Singularity Arising in Two-Dimensional Scattering Problems. IEEE Transactions on Antennas and Propagation, 2010, 58, 2725-2731.	3.1	6
268	Potentially eventually positive double star sign patterns. Applied Mathematics Letters, 2012, 25, 1619-1624.	1.5	6
269	display="inline" overflow="scroll"> <mml:mi>L</mml:mi> \uU factorization for block tridiagonal block <mml:math altimg="si2.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>H</mml:mi></mml:math> -matrices, lournal of Computational and Applied	1.1	6
270	Mathematics, 2012, 236, 2673-2684. Region-based object and background extraction via active contours. Optik, 2013, 124, 6020-6026.	1.4	6

#	Article	IF	Citations
271	A patchâ€based tensor decomposition algorithm for Mâ€FISH image classification. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 622-632.	1.1	6
272	Image inpainting using reproducing kernel Hilbert space and Heaviside functions. Journal of Computational and Applied Mathematics, 2017, 311, 551-564.	1.1	6
273	A non-convex regularization approach for compressive sensing. Advances in Computational Mathematics, 2019, 45, 563-588.	0.8	6
274	Optimal Estimates of Two Common Remainders for a Robust Generalized Chinese Remainder Theorem. IEEE Transactions on Signal Processing, 2019, 67, 1824-1837.	3.2	6
275	A Fast Second-Order Implicit Difference Method for Time-Space Fractional Advection-Diffusion Equation. Numerical Functional Analysis and Optimization, 2020, 41, 257-293.	0.6	6
276	Adaptive total variation and second-order total variation-based model for low-rank tensor completion. Numerical Algorithms, 2021, 86, 1-24.	1.1	6
277	The Implementation of LSMR in Image Deblurring. Applied Mathematics and Information Sciences, 2014, 8, 3041-3048.	0.7	6
278	Comparison results between Jacobi and other iterative methods. Journal of Computational and Applied Mathematics, 2004, 169, 45-51.	1.1	5
279	The upper Jacobi and upper Gauss–Seidel type iterative methods for preconditioned linear systems. Applied Mathematics Letters, 2006, 19, 1029-1036.	1.5	5
280	Subdirect sums of P(P0)-matrices and totally nonnegative matrices. Linear Algebra and Its Applications, 2008, 429, 1730-1743.	0.4	5
281	New block triangular preconditioner for linear systems arising from the discretized time-harmonic Maxwell equations. Computer Physics Communications, 2009, 180, 1853-1859.	3.0	5
282	A novel domain decomposition method for highly oscillating partial differential equations. Engineering Analysis With Boundary Elements, 2009, 33, 1284-1288.	2.0	5
283	On Inclusion and Exclusion Intervals for the Real Eigenvalues of Real Matrices. SIAM Journal on Matrix Analysis and Applications, 2009, 31, 816-830.	0.7	5
284	Singularity, Wielandt's lemma and singular values. Journal of Computational and Applied Mathematics, 2010, 234, 2943-2952.	1.1	5
285	Bounds on the generalized $\hat{l}\frac{1}{4}$ -scrambling indices of primitive digraphs. International Journal of Computer Mathematics, 2012, 89, 17-29.	1.0	5
286	Is every nonsingular matrix diagonally equivalent to a matrix with all distinct eigenvalues?. Linear Algebra and Its Applications, 2012, 436, 120-125.	0.4	5
287	Second-Order Leader-Following Consensus of Multiagent Systems with Time Delays. Mathematical Problems in Engineering, 2013, 2013, 1-8.	0.6	5
288	Schwarz Waveform Relaxation for a Neutral Functional Partial Differential Equation Model of Lossless Coupled Transmission Lines. SIAM Journal of Scientific Computing, 2013, 35, A1161-A1191.	1.3	5

#	Article	IF	CITATIONS
289	Formation Control of Second-Order Multiagent Systems with Time-Varying Delays. Mathematical Problems in Engineering, 2014, 2014, 1-8.	0.6	5
290	Eventual positivity of tridiagonal sign patterns. Linear and Multilinear Algebra, 2014, 62, 853-859.	0.5	5
291	A Model Based on Cocitation for Web Information Retrieval. Mathematical Problems in Engineering, 2014, 2014, 1-6.	0.6	5
292	Some classes of nonsingular matrices with applications to localize the real eigenvalues of real matrices. Linear Algebra and Its Applications, 2014, 447, 74-87.	0.4	5
293	Enhanced joint sparsity via iterative support detection. Information Sciences, 2017, 415-416, 298-318.	4.0	5
294	A Tensor-Based Low-Rank Model for Single-Image Rain Streaks Removal. IEEE Access, 2019, 7, 83437-83448.	2.6	5
295	Pan-Sharpening Via RoG-Based Filtering. , 2019, , .		5
296	A convex single image dehazing model via sparse dark channel prior. Applied Mathematics and Computation, 2020, 375, 125085.	1.4	5
297	Bilateral Joint-Sparse Regression for Hyperspectral Unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 10147-10161.	2.3	5
298	Characterization of H-matrices. Computers and Mathematics With Applications, 2004, 48, 1587-1601.	1.4	4
299	On generalized H-matrices. Linear Algebra and Its Applications, 2005, 396, 81-90.	0.4	4
300	A class of preconditioners based on the -type preconditioning matrices for solving linear systems. Applied Mathematics and Computation, 2007, 189, 1737-1748.	1.4	4
301	A method for constructing trivariate nonseparable compactly supported orthogonal wavelets. International Journal of Computer Mathematics, 2009, 86, 1264-1273.	1.0	4
302	Stability of block LU factorization for block tridiagonal matrices. Computers and Mathematics With Applications, 2009, 57, 339-347.	1.4	4
303	Global Asymptotic Robust Stability and Global Exponential Robust Stability of Neural Networks with Time-Varying Delays. Neural Processing Letters, 2009, 30, 229-241.	2.0	4
304	Some lower bounds for the spectral radius of matrices using traces. Linear Algebra and Its Applications, 2010, 432, 1007-1016.	0.4	4
305	Extremal ranks of matrix expression of $A\hat{a}^{\circ}BXC$ with respect to Hermitian matrix. Applied Mathematics and Computation, 2010, 217, 2381-2389.	1.4	4
306	A NOVEL LANCZOS-TYPE PROCEDURE FOR COMPUTING EIGENELEMENTS OF MAXWELL AND HELMHOLTZ PROBLEMS. Progress in Electromagnetics Research, 2010, 110, 81-101.	1.6	4

#	Article	IF	Citations
307	A CONSTRAINT PRECONDITIONER FOR SOLVING SYMMETRIC POSITIVE DEFINITE SYSTEMS AND APPLICATION TO THE HELMHOLTZ EQUATIONS AND POISSON EQUATIONS. Mathematical Modelling and Analysis, 2010, 15, 299-311.	0.7	4
308	Triangular and skew-symmetric splitting method for numerical solutions of Markov chains. Computers and Mathematics With Applications, 2011, 62, 4039-4048.	1.4	4
309	Critical sets of refined inertias for irreducible zero–nonzero patterns of orders 2 and 3. Linear Algebra and Its Applications, 2012, 437, 490-498.	0.4	4
310	The smallest signless Laplacian spectral radius of graphs with a given clique number. Linear Algebra and Its Applications, 2013, 439, 2562-2576.	0.4	4
311	An Adaptive Reordered Method for Computing PageRank. Journal of Applied Mathematics, 2013, 2013, 1-6.	0.4	4
312	The Extrapolation-Accelerated Multilevel Aggregation Method in PageRank Computation. Mathematical Problems in Engineering, 2013, 2013, 1-8.	0.6	4
313	A hybrid recursive multilevel incomplete factorization preconditioner for solving general linear systems. Applied Numerical Mathematics, 2016, 104, 141-157.	1.2	4
314	A New Projected Variant of the Deflated Block Conjugate Gradient Method. Journal of Scientific Computing, 2019, 80, 1116-1138.	1.1	4
315	A novel non-convex low-rank tensor approximation model for hyperspectral image restoration. Applied Mathematics and Computation, 2021, 408, 126342.	1.4	4
316	Generalized α-diagonal dominance. Computers and Mathematics With Applications, 2003, 45, 1721-1727.	1.4	3
317	An improvement of Ky Fan theorem for matrix eigenvalues. Computers and Mathematics With Applications, 2005, 49, 789-803.	1.4	3
318	Estimations for certain determinants. Computers and Mathematics With Applications, 2005, 50, 1677-1684.	1.4	3
319	An iterative algorithm for searching a scaling matrix for diagonal dominance. Applied Mathematics and Computation, 2005, 164, 821-828.	1.4	3
320	An improvement on a new upper bound for moduli of eigenvalues of iterative matrices. Applied Mathematics and Computation, 2006, 173, 977-984. "display="inline" overflow="scroll"	1.4	3
321	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	1.5	3
322	New comparison results for parallel multisplitting iterative methods. Applied Mathematics and Computation, 2008, 206, 738-747.	1.4	3
323	A condition for the nonsymmetric saddle point matrix being diagonalizable and having real and positive eigenvalues. Journal of Computational and Applied Mathematics, 2008, 220, 8-12.	1.1	3
324	GRPM-style methods and comparisons of convergent and divergent rates. Computers and Mathematics With Applications, 2009, 57, 550-559.	1.4	3

#	Article	IF	CITATIONS
325	A modified T. Chan's preconditioner for Toeplitz systems. Computers and Mathematics With Applications, 2009, 58, 693-699.	1.4	3
326	Some New Results on Determinantal Inequalities and Applications. Journal of Inequalities and Applications, 2010, 2010, 1-16.	0.5	3
327	A symmetric positive definite preconditioner for saddle-point problems. International Journal of Computer Mathematics, 2011, 88, 2942-2954.	1.0	3
328	A novel family of iterative solvers for method of moments discretizations of maxwell's equations. , 2011, , .		3
329	A modified algorithm for the Perron root of a nonnegative matrix. Applied Mathematics and Computation, 2011, 217, 4453-4458.	1.4	3
330	On Perron complements of inverse <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nl:014 nl:mn*>0 </td <td>mന്പി:mn></td>	mന്പി:mn>
331	DCT- and DST-based splitting methods for Toeplitz systems. International Journal of Computer Mathematics, 2012, 89, 691-700.	1.0	3
332	An approximate inverse preconditioner for Toeplitz systems with multiple right-hand sides. Applied Mathematics and Computation, 2012, 218, 11370-11379.	1.4	3
333	Flexible incomplete Cholesky factorization with multiâ€parameters to control the number of nonzero elements in preconditioners. Numerical Linear Algebra With Applications, 2012, 19, 555-569.	0.9	3
334	Image restoration with shifting reflective boundary conditions. Science China Information Sciences, 2013, 56, 1-15.	2.7	3
335	Several consensus protocols with memory of multi-agent systems. Mathematical and Computer Modelling, 2013, 58, 1625-1633.	2.0	3
336	Some new strategies for RCM ordering in solving electromagnetic scattering problems. Computer Physics Communications, 2013, 184, 1161-1164.	3.0	3
337	An Alternating Direction Method for Mixed Gaussian Plus Impulse Noise Removal. Abstract and Applied Analysis, 2013, 2013, 1-11.	0.3	3
338	An Efficient Variational Method for Image Restoration. Abstract and Applied Analysis, 2013, 2013, 1-11.	0.3	3
339	New Regularization Models for Image Denoising with a Spatially Dependent Regularization Parameter. Abstract and Applied Analysis, 2013, 2013, 1-15.	0.3	3
340	A New Improved Parsimonious Multivariate Markov Chain Model. Journal of Applied Mathematics, 2013, 2013, 1-10.	0.4	3
341	Periodic, reducible, powerful ray pattern matrices. Linear Algebra and Its Applications, 2014, 444, 81-88.	0.4	3
342	An adaptive weighting parameter selection for improved integrated active contour model. Optik, 2015, 126, 5331-5335.	1.4	3

#	Article	IF	Citations
343	Super-resolution via a fast deconvolution with kernel estimation. Eurasip Journal on Image and Video Processing, 2016, 2017, .	1.7	3
344	A new surrogate for tensor multirank and applications in image and video completion. , 2017, , .		3
345	A Convex Optimization Model and Algorithm for Retinex. Mathematical Problems in Engineering, 2017, 2017, 1-14.	0.6	3
346	A Unidirectional Total Variation and Second-Order Total Variation Model for Destriping of Remote Sensing Images. Mathematical Problems in Engineering, 2017, 2017, 1-10.	0.6	3
347	Semi-convergence analysis of the GSS iteration methods for singular saddle point problems. Journal of Computational and Applied Mathematics, 2018, 328, 1-11.	1.1	3
348	Global FOM and GMRES algorithms for a class of complex matrix equations. Journal of Computational and Applied Mathematics, 2018, 335, 227-241.	1.1	3
349	Weighted Group Sparsity Regularized Low-Rank Tensor Decomposition for Hyperspectral Image Restoration. , 2019, , .		3
350	Nonlocal Block-Term Decomposition for Hyperspectral Image Mixed Noise Removal. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 5406-5420.	2.3	3
351	Block triangular preconditioner for static Maxwell equations. Computational and Applied Mathematics, 2011, 30, 589-612.	1.0	3
352	Fast IIF–WENO Method on Non-uniform Meshes for Nonlinear Space-Fractional Convection–Diffusion–Reaction Equations. Journal of Scientific Computing, 2021, 89, 1.	1.1	3
353	Generalized doubly diagonally dominant matrices. International Journal of Computer Mathematics, 2004, 81, 863-870.	1.0	2
354	Iterative algorithm criterion for H-matrices. International Journal of Computer Mathematics, 2004, 81, 251-257.	1.0	2
355	A note on improvement on bounds for nonmaximal eigenvalues of symmetric positive matrices. Linear Algebra and Its Applications, 2006, 419, 612-617.	0.4	2
356	An error bound for the USAOR method. Journal of Computational and Applied Mathematics, 2007, 205, 608-616.	1.1	2
357	Novel criteria for global robust exponential stability of neural networks with time-varying delays via LMI approach. International Journal of Computer Mathematics, 2010, 87, 2188-2201.	1.0	2
358	An Improved PageRank Algorithm: Immune to Spam. , 2010, , .		2
359	A Study on Conjugate Quadrature Filters. Eurasip Journal on Advances in Signal Processing, 2011, 2011,	1.0	2
360	Sign patterns that allow diagonalizability revisited. Linear and Multilinear Algebra, 2013, 61, 1223-1233.	0.5	2

#	Article	IF	CITATIONS
361	A SPLITTING PRECONDITIONER FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS. Mathematical Modelling and Analysis, 2013, 18, 612-630.	0.7	2
362	Several spectrally arbitrary ray patterns. Linear and Multilinear Algebra, 2013, 61, 543-564.	0.5	2
363	Uni-mode uniqueness conditions for CANDECOMP/PARAFAC decomposition of n -way arrays with linearly dependent loadings. Linear Algebra and Its Applications, 2013, 439, 1918-1928.	0.4	2
364	Exploiting the Composite Step Strategy to the BiconjugateA-Orthogonal Residual Method for Non-Hermitian Linear Systems. Journal of Applied Mathematics, 2013, 2013, 1-16.	0.4	2
365	A New GMRES(m) Method for Markov Chains. Mathematical Problems in Engineering, 2013, 2013, 1-7.	0.6	2
366	An Improved Approach to the PageRank Problems. Journal of Applied Mathematics, 2013, 2013, 1-8.	0.4	2
367	Incomplete Augmented Lagrangian Preconditioner for Steady Incompressible Navier-Stokes Equations. Scientific World Journal, The, 2013, 2013, 1-6.	0.8	2
368	A New Multivariate Markov Chain Model for Adding a New Categorical Data Sequence. Mathematical Problems in Engineering, 2014, 2014, 1-8.	0.6	2
369	Backward Stability Analysis of Weighted Linear Least-Squares Problems. Journal of Optimization Theory and Applications, 2014, 162, 303-312.	0.8	2
370	A note on upper bounds for the spectral radius of weighted graphs. Applied Mathematics and Computation, 2014, 243, 392-397.	1.4	2
371	A Cost-Effective Smoothed Multigrid with Modified Neighborhood-Based Aggregation for Markov Chains. Mathematical Problems in Engineering, 2015, 2015, 1-15.	0.6	2
372	Fast permutation preconditioning for fractional diffusion equations. SpringerPlus, 2016, 5, 1109.	1.2	2
373	Quadratic spline collocation method and efficient preconditioner for the Helmholtz equation with the Sommerfeld boundary conditions. Japan Journal of Industrial and Applied Mathematics, 2016, 33, 701-720.	0.5	2
374	Integration of multiple genomic imaging data for the study of schizophrenia using joint nonnegative matrix factorization. , 2017, , .		2
375	Image fusion via dynamic gradient sparsity and anisotropic spectral-spatial total variation. , 2017, , .		2
376	On semi-convergence and inexact iteration of the GSS iteration method for nonsymmetric singular saddle point problems. Computational and Applied Mathematics, 2018, 37, 805-818.	1.3	2
377	A modified generalized shift-splitting method for nonsymmetric saddle point problems. Journal of Computational and Applied Mathematics, 2018, 328, 381-399.	1.1	2
378	Single image super-resolution based on approximated Heaviside functions and iterative refinement. PLoS ONE, 2018, 13, e0182240.	1.1	2

#	Article	IF	CITATIONS
379	A reduced-order discontinuous Galerkin method based on a Krylov subspace technique in nanophotonics. Applied Mathematics and Computation, 2019, 358, 128-145.	1.4	2
380	Fast numerical schemes for nonlinear space-fractional multidelay reaction-diffusion equations by implicit integration factor methods. Applied Mathematics and Computation, 2021, 408, 126360.	1.4	2
381	T-Hy-Demosaicing: Hyperspectral Reconstruction Via Tensor Subspace Representation Under Orthogonal Transformation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 4842-4853.	2.3	2
382	On the signless Laplacian spectral radius of unicyclic graphs with fixed matching number. Publications De L'Institut Mathematique, 2015, 97, 187-197.	0.3	2
383	Spatial feature extraction non-negative tensor factorization for hyperspectral unmixing. Applied Mathematical Modelling, 2022, 103, 18-35.	2.2	2
384	Semi-blind image deblurring by a proximal alternating minimization method with convergence guarantees. Applied Mathematics and Computation, 2020, 377, 125168.	1.4	2
385	Exemplar-based image inpainting using adaptive two-stage structure-tensor based priority function and nonlocal filtering. Journal of Visual Communication and Image Representation, 2022, 83, 103430.	1.7	2
386	Bounds for the extreme eigenvalues of symmetric matrices. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2003, 83, 214-216.	0.9	1
387	A note on generalized nonlinear diagonal dominance. Journal of Mathematical Analysis and Applications, 2006, 313, 581-586.	0.5	1
388	New estimations of the spectral radii of J, G–S and SOR iterative matrices for a class of linear systems. International Journal of Computer Mathematics, 2007, 84, 23-31.	1.0	1
389	Gauss type preconditioning techniques for linear systems. Applied Mathematics and Computation, 2007, 188, 612-633.	1.4	1
390	Relaxed forms of BBK algorithm and FBP algorithm for symmetric indefinite linear systems. Computers and Mathematics With Applications, 2008, 55, 801-807.	1.4	1
391	Construction of bivariate nonseparable compactly supported biorthogonal wavelets. , 2008, , .		1
392	A Memory-Reduced 2-D Order-Marching Time-Domain Method for Waveguide Studies. Journal of Electromagnetic Waves and Applications, 2008, 22, 2523-2531.	1.0	1
393	The digraphs and inclusion intervals of matrix singular values. Numerical Linear Algebra With Applications, 2009, 16, 677-687.	0.9	1
394	Spectral properties of primal-based penalty preconditioners for saddle point problems. Journal of Computational and Applied Mathematics, 2010, 233, 2235-2244.	1.1	1
395	ANALYSIS OF THE INEXACT UZAWA ALGORITHMS FOR NONLINEAR SADDLE-POINT PROBLEMS. ANZIAM Journal, 2010, 51, 369-382.	0.3	1
396	Two Matrix Iterative Methods for Solving General Coupled Matrix Equations. , 2010, , .		1

#	Article	IF	CITATIONS
397	The inverse positivity of perturbed tridiagonal M-matrices. Linear Algebra and Its Applications, 2011, 434, 131-143.	0.4	1
398	Bounds for the (Laplacian) spectral radius of graphs with parameter \hat{l}_{\pm} . Czechoslovak Mathematical Journal, 2012, 62, 567-580.	0.3	1
399	An efficient operator splitting method for local region Chan-Vese model. Eurasip Journal on Advances in Signal Processing, 2013, 2013, .	1.0	1
400	Consensus of Multiagent Systems with Sampled Information and Noisy Measurements. Discrete Dynamics in Nature and Society, 2013, 2013, 1-9.	0.5	1
401	Two New Efficient Iterative Regularization Methods for Image Restoration Problems. Abstract and Applied Analysis, 2013, 2013, 1-9.	0.3	1
402	New Results for Periodic Solution of High-Order BAM Neural Networks with Continuously Distributed Delays and Impulses. Journal of Applied Mathematics, 2013, 2013, 1-11.	0.4	1
403	Global Quasi-Minimal Residual Method for Image Restoration. Mathematical Problems in Engineering, 2015, 2015, 1-8.	0.6	1
404	Tree sign patterns that allow nilpotence of index 4. Linear and Multilinear Algebra, 2015, 63, 1009-1025.	0.5	1
405	Effective preconditioning through minimum degree ordering interleaved with incomplete factorization. Journal of Computational and Applied Mathematics, 2015, 279, 225-232.	1.1	1
406	BiCGCR2: A new extension of conjugate residual method for solving non-Hermitian linear systems. Journal of Computational and Applied Mathematics, 2016, 305, 115-128.	1.1	1
407	New inexact explicit thresholding/shrinkage formulas for inverse problems with overlapping group sparsity. Eurasip Journal on Image and Video Processing, 2016, 2016, .	1.7	1
408	Stripe noise removal of remote sensing image with a directional l <inf>0</inf> sparse model. , 2017, , .		1
409	Acceleration of the Scheduled Relaxation Jacobi method: Promising strategies for solving large, sparse linear systems. Journal of Computational Physics, 2019, 397, 108862.	1.9	1
410	Low-Rank Tensor Completion via Tensor Nuclear Norm With Hybrid Smooth Regularization. IEEE Access, 2019, 7, 131888-131901.	2.6	1
411	Unidirectional Sparse Tensor Based Model for the Noise Removal of Remote Sensing Image., 2019,,.		1
412	Restarted global FOM and GMRES algorithms for the Stein-like matrix equation $X+M(X)=C$. Applied Mathematics and Computation, 2019, 348, 206-214.	1.4	1
413	On symmetric matrices with exactly one positive eigenvalue. Electronic Journal of Linear Algebra, 0, 20, .	0.6	1
414	New preconditioners for nonsymmetric and indefinite saddle point linear systems. Miskolc Mathematical Notes, 2011, 12, 41.	0.3	1

#	Article	IF	CITATIONS
415	A Variational Approach with Nonlocal Self-Similarity and Joint-Sparsity for Hyperspectral Image Super-Resolution., 2021,,.		1
416	Enhancing Reweighted Low-Rank Representation for Hyperspectral Image Unmixing., 2021,,.		1
417	Quasi-Optimized Overlapping Schwarz Waveform Relaxation Algorithm for PDEs with Time-Delay. Communications in Computational Physics, 2013, 14, 780-800.	0.7	1
418	A non-intrusive model order reduction approach for parameterized time-domain Maxwell's equations. Discrete and Continuous Dynamical Systems - Series B, 2023, 28, 449.	0.5	1
419	A fast sketching-based algorithm for rank- <mml:math altimg="si7.svg" display="inline" id="d1e116" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo><mml:mo><mml:mi>Lblock term decomposition. Applied Mathematics Letters. 2022. 133. 108252.</mml:mi></mml:mo></mml:mo></mml:mrow></mml:math>	1.5 ıml:mi> <n< td=""><td>nml:mo>,<</td></n<>	nml:mo>,<
420	An error bound for the MAOR method. Computers and Mathematics With Applications, 2003, 45, 1739-1748.	1.4	0
421	An improved iterative algorithm for generalized diagonally dominant matrices. Applied Mathematics and Computation, 2006, 181, 742-746.	1.4	0
422	On Global Asymptotic Stability of a Class of Neural Networks with Time Delays. , 2006, , .		0
423	Uniform Convergence of Tensor Product Wavelet Series. , 2006, , .		0
424	An analysis of convergence for nonstationary two-stage multisplitting waveform relaxation methods. International Journal of Computer Mathematics, 2007, 84, 1701-1713.	1.0	0
425	A Note on Global Exponentially Stability of Neural Networks with Multiple Time Delays. , 2007, , .		0
426	An error bound for the preconditioned simultaneous displacement method. Applied Mathematics and Computation, 2007, 188, 772-778.	1.4	0
427	A generalized nonlinear diagonal dominance. International Journal of Computer Mathematics, 2008, 85, 73-82.	1.0	0
428	PERTURBATION THEORY FOR THE LU AND QR FACTORIZATIONS. ANZIAM Journal, 2008, 49, 451-461.	0.3	0
429	A Study on Conjugate Quadratrue Filters. , 2009, , .		0
430	Convergence behaviors of multisplitting methods with <mml:math altimg="si7.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math> relaxed parameters. Journal of Computational and Applied Mathematics, 2009, 229, 61-69.	1.1	O
431	A class of approximate inverse preconditioners for solving linear systems. International Journal of Computer Mathematics, 2009, 86, 1243-1252.	1.0	O
432	A new note on spectra of optimal and superoptimal preconditioned matrices. , 2010, , .		O

#	Article	IF	Citations
433	Linear system based approach for solving some related problems of <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:math> -matrices. Linear Algebra and Its Applications, 2010, 432, 327-337.	0.4	0
434	Investigating the composite step biconjugate A-orthogonal residual method for non-hermitian linear systems in electromagnetics. , 2011 , , .		0
435	Collective Coordination of High-Order Dynamic Multiagent Systems Guided by Multiple Leaders. Mathematical Problems in Engineering, 2011, 2011, 1-11.	0.6	O
436	Comparison of Algebraic Multigrid Preconditioners for Solving Helmholtz Equations. Journal of Applied Mathematics, 2012, 2012, 1-12.	0.4	0
437	Monotonicity of Perturbed Tridiagonal \$M\$-Matrices. SIAM Journal on Matrix Analysis and Applications 2012 33, 681-700 Stability analysis of block < mm:math altimg="si4.gif" display="inline" overflow="scroll"	0.7	O
438	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www	1.1	0
439	Anumerical method and efficient preconditioner for generalized airfoil equations. Applied Mathematics and Computation, 2013, 219, 11451-11459.	1.4	O
440	A Parameterized Splitting Preconditioner for Generalized Saddle Point Problems. Journal of Applied Mathematics, 2013, 2013, 1-6.	0.4	0
441	Some Refinements and Generalizations of I. Schur Type Inequalities. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	0
442	Group Consensus with a Dynamic Leader for Multiagent Systems via Sampled-Data Control. Discrete Dynamics in Nature and Society, 2014, 2014, 1-9.	0.5	0
443	Accelerated preconditioner updates for solving shifted linear systems. International Journal of Computer Mathematics, 2017, 94, 747-756.	1.0	0
444	Extrapolation-accelerated aggregation multigrid with block relaxations for GeneRank problems. , 2017, , .		0
445	Multipreconditioned GMRES for simulating stochastic automata networks. Open Mathematics, 2018, 16, 986-998.	0.5	0
446	Variants of the Block-GMRES Method for Solving Linear Systems with Multiple Right-Hand Sides. , 2018, , .		0
447	The Unifying Frameworks of Information Measures. Mathematical Problems in Engineering, 2018, 2018, 1-16.	0.6	0
448	Total Variation with Overlapping Group Sparsity for Removing Mixed Noise. Lecture Notes in Electrical Engineering, 2019, , 223-235.	0.3	0
449	Chaos in Determinant Condensation Calculations. College Mathematics Journal, 0, , 1-10.	0.0	0
450	Hyperspectral Denoising Via Global Tensor Ring Decomposition and Local Unsupervised Deep Image Prior., 2021,,.		0

#	Article	IF	CITATIONS
451	Two novel aggregation-based algebraic multigrid methods. Miskolc Mathematical Notes, 2013, 14, 143.	0.3	0
452	Image Edge Sharpening via Heaviside Substitution and Structure Recovery. Association for Women in Mathematics Series, 2021, , 25-48.	0.1	0