Julin Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/132454/publications.pdf

Version: 2024-02-01

623699 526264 26 844 14 27 citations h-index g-index papers 29 29 29 1431 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Conditioned Medium from Hypoxic Bone Marrow-Derived Mesenchymal Stem Cells Enhances Wound Healing in Mice. PLoS ONE, 2014, 9, e96161.	2.5	187
2	Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately. Stem Cell Research and Therapy, 2015, 6, 120.	5.5	118
3	Epidermal stem cells in wound healing and their clinical applications. Stem Cell Research and Therapy, 2019, 10, 229.	5.5	107
4	Granulocyte/Macrophage Colony-Stimulating Factor Influences Angiogenesis by Regulating the Coordinated Expression of VEGF and the Ang/Tie System. PLoS ONE, 2014, 9, e92691.	2.5	63
5	Prostaglandin E ₂ inhibits collagen synthesis in dermal fibroblasts and prevents hypertrophic scar formation <i>in vivo</i> . Experimental Dermatology, 2016, 25, 604-610.	2.9	36
6	Basic fibroblast growth factor reduces scar by inhibiting the differentiation of epidermal stem cells to myofibroblasts via the Notch1/Jagged1 pathway. Stem Cell Research and Therapy, 2017, 8, 114.	5.5	35
7	Epidermal Stem Cells in Wound Healing and Regeneration. Stem Cells International, 2020, 2020, 1-11.	2.5	34
8	Exosomes Derived from Epidermal Stem Cells Improve Diabetic Wound Healing. Journal of Investigative Dermatology, 2022, 142, 2508-2517.e13.	0.7	31
9	Progress in studies of epidermal stem cells and their application in skin tissue engineering. Stem Cell Research and Therapy, 2020, 11, 303.	5.5	30
10	microRNA-203 Modulates Wound Healing and Scar Formation via Suppressing Hes1 Expression in Epidermal Stem Cells. Cellular Physiology and Biochemistry, 2018, 49, 2333-2347.	1.6	26
11	Curcumin promotes burn wound healing in mice by upregulating caveolinâ€1 in epidermal stem cells. Phytotherapy Research, 2019, 33, 422-430.	5.8	22
12	Fibronectin precoating wound bed enhances the therapeutic effects of autologous epidermal basal cell suspension for full-thickness wounds by improving epidermal stem cells' utilization. Stem Cell Research and Therapy, 2019, 10, 154.	5.5	20
13	Transient High Glucose Causes Persistent Vascular Dysfunction and Delayed Wound Healing by the DNMT1-Mediated Ang-1/NF-ÎB Pathway. Journal of Investigative Dermatology, 2021, 141, 1573-1584.	0.7	20
14	Role of caveolin-1 in epidermal stem cells during burn wound healing in rats. Developmental Biology, 2019, 445, 271-279.	2.0	15
15	Porcine acellular dermal matrix accelerates wound healing through miR-124-3p.1 and miR-139-5p. Cytotherapy, 2020, 22, 494-502.	0.7	15
16	Involvement of miRNA203 in the proliferation of epidermal stem cells during the process of DM chronic wound healing through Wnt signal pathways. Stem Cell Research and Therapy, 2020, 11, 348.	5.5	13
17	Quantification of the differential expression levels of microRNA-203 in different degrees of diabetic foot. International Journal of Clinical and Experimental Pathology, 2015, 8, 13416-20.	0.5	13
18	Dendritic epidermal T cells facilitate wound healing in diabetic mice. American Journal of Translational Research (discontinued), 2016, 8, 2375-84.	0.0	13

#	Article	IF	CITATIONS
19	CENPF as an independent prognostic and metastasis biomarker corresponding to CD4+ memory T cells in cutaneous melanoma. Cancer Science, 2022, 113, 1220-1234.	3.9	11
20	Defects in dermal $\hat{V}^34\hat{I}^3\hat{I}$ T cells result in delayed wound healing in diabetic mice. American Journal of Translational Research (discontinued), 2016, 8, 2667-80.	0.0	9
21	Effects of Basic Fibroblast Growth Factors on Hypertrophic Scarring in a Rabbit Ear Model. Journal of Cutaneous Medicine and Surgery, 2008, 12, 155-162.	1.2	7
22	Granulocyte/macrophage colony-stimulating factor attenuates endothelial hyperpermeability after thermal injury. American Journal of Translational Research (discontinued), 2015, 7, 474-88.	0.0	7
23	Study on the Effect of the Five-in-One Comprehensive Limb Salvage Technologies of Treating Severe Diabetic Foot. Advances in Wound Care, 2020, 9, 676-685.	5.1	4
24	Effects of antisense oligodeoxynucleotide to type I collagen gene on hypertrophic scars in the transplanted nude mouse model. Journal of Cutaneous Pathology, 2009, 36, 1146-1150.	1.3	3
25	Comprehensive analysis identifies IF116 as a novel signature associated with overall survival and immune infiltration of skin cutaneous melanoma. Cancer Cell International, 2021, 21, 694.	4.1	2
26	Reduced hydration-induced decreased caveolin-1 expression causes epithelial-to-mesenchymal transition. American Journal of Translational Research (discontinued), 2020, 12, 8067-8083.	0.0	1